Temporal trends in the difference between gravimetric and reconstructed fine mass

Jenny Hand¹

A.J. Prenni², B.A. Schichtel², W.C. Malm¹

¹ Colorado State University, CIRA

² NPS, Air Resources Division

Reconstructed Fine Mass (RCFM)

- RCFM = sum of aerosol species assumed to compose fine mass (PM_{2.5})
- Requires assumptions about the molecular form of individual species
- Necessary for estimating contributions to PM_{2.5} mass and visibility
- QA check on biases in gravimetric or speciated measurements (e.g., Malm et al., 2011)

RCFM =

Ammonium Sulfate (1.375*SO₄-2) + Ammonium Nitrate (1.29*NO₃-) + Particulate Organic Matter (1.8*OC) + Elemental Carbon + Dust + Sea Salt (1.8*Cl-) Why?

Dave Ridley (MIT) alerted us to diverging trends in gravimetric and reconstructed fine mass just before last year's IMPROVE meeting.

FM-RCFM

- Monthly, seasonal means in FM-RCFM and FM/RCFM
- Spatial and seasonal exploration FM-RCFM
- Temporal trends (2005-2014) in FM/RCFM
- Multiple linear regression to investigate trends in FM/RCFM

Current (2011-2014) Seasonal Mean FM/RCFM

Large spatial and seasonal variability

Annual FM-RCFM: (2005-2008) vs (2011-2014)

2005-2008

Earlier period: FM < RCMF

2011-2014

Later period: <u>FM</u> > RCFM

Annual mean trends in FM and RCFM (2000-2014)

FM (% yr⁻¹)

Point Reyes, CA

RCFM (% yr⁻¹)

Higher rate of decrease

Seasonal Trends in FM/RCFM (% yr⁻¹) (2005-2014)

Increase in FM/RCFM across the network and all seasons

Network Average IMPROVE and CSN FM/RCFM

IMPROVE (Rural)

CSN (Urban)

Multiple Linear Regression (MLR):

(2005-2014: seasonally, annually)

$$FM_{adj}-EC = a_o + a_1AS + a_2AN + a_3OC + a_4dust + a_5SS$$

Where:

```
FM<sub>adj</sub>-EC = PM<sub>2.5</sub>(adjusted for laboratory RH*) – elemental carbon
```

AS = ammonium sulfate $(1.375*SO_4^{-2})$

AN = ammonium nitrate $(1.29*NO_3)$

OC = organic carbon

Dust = sum of oxides

SS = sea salt (1.8*Cl⁻)

Interpretation:

$$a_{1}, a_{2}, a_{4}, a_{5} \sim 1$$

 $a_{3} = R_{oc}$ (e.g. OM/OC ratio)

* Water calculated explicitly for ~laboratory conditions

Changes in Lab Conditions in 2011

Posting type Advisory

Subject Under-controlled humidity in the weighing laboratory

Module/Species A/ MF, D/ MT

Sites All

Period 2011 and later

Recommendation Recognize that gravimetric measurements are not FRM-compliant

Submitter W.H. White, whwhite@ucdavis.edu,

Filter handling and weighing moved to a different laboratory in 2011

IMPROVE MLR AS Coefficients: Effects of RH

No adjustments

FM adjusted for water bias

My assumptions:

Before 2011: 28% all seasons

After 2011:

Winter & Spring: 35%

Fall & Summer: 40%

2012 and 2013:

Summer: 45%

2014:

Summer: 55%

IMPROVE network average AS mass fraction

AS contributions to RCFM have decreased since 2000

3S > SO4

IMPROVE Network Average MLR Coefficients (95% sig.)

(Turpin and Lim, 2001; Aiken et al., 2008; Philip et al., 2014)

Summer R_{oc} (OC Coefficients)

IMPROVE Network Average

Organic Fractions

(O1/OC, O2/OC, etc.)

O3/OC & O4/OC increased

OC Fraction Annual Trends (slopes) (2005-2014)

Comparisons of MLR-R_{oc} to A. Dillner's FTIRderived values for 2011 and 2013

Carbon Field Blanks (2005-2016)

Summary (Preliminary)

- FM/RCFM has increased across the network and all seasons
- Trends IMPROVE FM and RCFM suggest RCFM is increasingly underestimating FM, biases in FM have increased, OR both.
- MLR results suggest that organic carbon multiplier has increased (greatest increase in summer) across the network
- Resolving differences in FM and RCFM is imperative for accurately estimating contributions to PM_{2.5} mass and visibility degradation
- Working group discussion at the end of day

Working Group Discussion Outline: Possible activities to investigate potential changes in Roc

- 1. Is there a trend in R_{oc} in the IMPROVE data?
 - a) Refine MLR analyses
- 2. Could the trends in R_{oc} be due to analytical issues?
 - a) Could the measured OC on quartz filters underreport the measured OC on Teflon filters? If so, how?
 - b) Review history of analytical changes in methodology and procedures of OC measurements
 - i. What analytic changes have occurred and how might they contribute?
 - ii. Could analytical changes impact the split in OC/EC or OC fractions? (e.g., OC3 and OC4 trends)
 - iii. Filter storage (change in lag time)
 - iv. Instrument maintenance, calibrations, upgrades
 - c) Review OC blanks
 - d) Compare to FTIR-derived R_{oc}
 - e) Are the trends evident in independent datasets
 - i. Similar analysis with SEARCH data (independent carbon analysis)
 - ii. Optical data analysis (Consistent so far)
 - iii. CSN (pseudo-independent)
 - iv. Literature values (review)
 - f) Interference of mineral aerosols
 - g) Reanalysis of archived filters (Biases? Costs?)

Working Group Discussion Outline: Continued

- 3. What are "typical" R_{oc} factors that should be used at IMPROVE sites?
 - a) Derive new R_{oc} using MLR (include seasonal/spatial differences)
 - b) OC hygroscopicity
 - c) New carbon composition analyses
 - i. TOR-MS, etc.
 - ii. FTIR
 - iii. Other (AMS data, etc.)?

Acknowledgements

National Park Service Air Resources Division

IMPROVE

http://vista.cira.colostate.edu/Improve/

jlhand@colostate.edu