Southeastern US Winter
Particle Nitrate Study

Continuing Progress Towards Natural Visibility Conditions
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IMPROVE Data - 2005 Second IMPROVE Algorithm
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IMPROVE Data - 2006 Second IMPROVE Algorithm
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IMPROVE Data - 2007 Second IMPROVE Algorithm

Non Rayleigh Mean of 20% Most Impaired
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IMPROVE Data - 2008 Second IMPROVE Algorithm

Non Rayleigh Mean of 20% Most Impaired
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IMPROVE Data - 2009 Second IMPROVE Algorithm

Non Raylelgh Mean of 20% Most Impaired
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IMPROVE Data - 2010 Second IMPROVE Algorithm

Non Raylelgh Mean of 20% Most Impaired
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IMPROVE Data - 2011 Second IMPROVE Algorithm

Non Rayleigh Mean of 20% Most Impaired
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IMPROVE Data - 2012 Second IMPROVE Algorithm

Non Rayleigh Mean of 20% Most Impaired
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IMPROVE Data - 2013 Second IMPROVE Algorithm

Non Raylelgh Mean of 20% Most Impaired
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IMPROVE Data - 2014 Second IMPROVE Algorithm

Non Rayleigh Mean of 20% Most Impaired
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IMPROVE Data - 2015 Second IMPROVE Algorithm
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IMPROVE Data - 2016 Second IMPROVE Algorithm

Non Rayleigh Mean of 20% Most Impaired
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IMPROVE Data - 2017 Second IMPROVE Algorithm

Non Raylelgh Mean of 20% Most Impaired
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IMPROVE Data - 2018 Second IMPROVE Algorithm

Non Rayleigh Mean of 20% Most Impaired
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IMPROVE Data - 2019 Second IMPROVE Algorithm
Non Rayleigh Mean of 20% Most Impaired
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IMPROVE Data - 2020 Second IMPROVE Algorithm
Non Rayleigh Mean of 20% Most Impaired
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IMPROVE Data - 2021 Second IMPROVE Algorithm
Non Rayleigh Mean of 20% Most Impaired
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IMPROVE Data - 2022 Second IMPROVE Algorithm
Non Rayleigh Mean of 20% Most Impaired
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IMPROVE Data - 2023 Second IMPROVE Algorithm
Non Rayleigh Mean of 20% Most Impaired
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Issue

* Ammonium nitrate is becoming a larger fraction of human caused
haze impairment in the southeastern US (and other regions)
* Winter haze is decreasing at slower rate than summer

e Why?
 Sulfate has decreased, but what else is happening?

* How might it change in the future?
* What can we do about it?



e © Excess NO,/HNO,

® o NH, limited

e NH; reductions result in
PM2.5 reductions

Atmospheric Nitrogen e G5 6 €-> W)

B o Excess NH./NH,

e HNO; limited

e NH; reduction result in
PM, < reduction

Sroduction

—  Combustion

e NOx is oxidized forming nitric acid (HNO;) gas
e Nitric acid is generally neutralized by ammonia forming particulate ammonium
nitrates. This reaction is temperature and humidity dependent




Relationship of Sulfates and Nitrates

Ammonia limited conditions

Uncontrolled Controlled

« Ammonia preferentially neutralized sulfate acids over nitric acid

* In a NH3 limited regime, reductions in SO, or increases in NH; can increase the
formation of ammonium nitrate particles



Eastern US SO, Emissions and Sulfate Trends
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e Steep declines in annual SO, emission rates since 1995
e Near linear response in sulfate from 1995 — 2007 (Malm et al., 2002; Hand et al., 2012)

e Since 2007 winter sulfate decreased as a smaller rate than during the summer causing the
change in the sulfate seasonality



Eastern US NOx Emissions and Nitrate Trends

Trends in 5-Yr Average Eastern US Total NH; and NO,
Emissions and IMPROVE NH,NO,
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* Ambient Nitrate and NOx emissions have had large reduction, while NH3 emission have
increased
* Nitrate has decreased at less than half the rate of NOx



Shift in Secondary Inorganic Aerosol Formation in the Rural
CONUS from 2011-2020

s particulate nitrate formation NH;, NOx limited or both?

Da Pan, Denise L. Mauzerall, Lillian E. Naimie, John T. Walker, Amy P. Sullivan, Aleksandra Djurkovic, Rui Wang, Xuehui
Guo, Melissa Puchalski, Bret A. Schichtel, Mark A. Zondlo, Jeffrey L. Collett Jr.

Da et al., (2023) Nature Geoscience

Colorado State University




Definitions

Total ammonium (NH,") = NH; (g) + NH,* (P)
Total Nitrate (NO,") = HNO, (g) + NO; (P)
e(NHJ}) fraction of NH,* in NH,"

£(NO3) fraction of particulate NO; in NO,'



Measured Data Driven Aerosol Thermodynamic
Modeling

NHs-limited NO;™ (ug m?)
(@) 90

What is the sensitivity of particulate nitrate v

to changes in NH," and NO,'?

70 ==
60

50

* |ISORROPIA-II thermodynamic model

 The model partitions total nitrate (HNO3 and 30
PNO;) and total ammonia (NH; and NH,) between 55
the gas and aerosol phases.

40

N O3TI Mg/m3

10

* Inputs include measured NO," and NH,', g
temperature, RH and other gaseous precursors and ¢ B R S8 W R e
aerosol data NH,T, ug/m?3

* Same thermodynamic model used in Chemical Ammonium nitrate concentrations simulated by
transport models, e.g. CMAQ and CAMx. ISORROPIA 1l depending on NO," and NH,T with SO, = 10

ng/ms3 (Lin et al., 2020).



Complete (mostly) monitoring of Nitrogen Compounds
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* In the last two decades, monitoring networks have gone through
tremendous improvements

* With AMoN, multiple networks can be integrated at sites (purple
circles) in rural regions

74 (e

20200~ (| sters i,

* Observations of precursor concentrations, aerosol composition,
and meteorological conditions are available - Improved aerosol
formation modeling and uncertainty estimates



Changing SIA (NO5+S0O,) formation regime
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£(NO3) e(NH; )

&(NH,*) decreased by 20 — 50% - More gaseous NH, that can deposit near emission hotspots

SIA formation became less sensitive to NH," changes - NH; controls became less effective than NO, controls

DI or 222 (40% reduction) WRAP CENSARA LADCO MANE-VU SESARM
ANH,; ~ ANO;
2011 NH," 0.3 1.1 1.0 1.5 0.8
2011 NO,T 0.2 0.5 0.6 0.5 0.4
2020 NH," 0.2 0.3 0.6 0.8 0.5

2020 NO,T 0.4 0.6 0.9 0.6 0.6




Changing SIA (NO;+S0O,) formation regime in SESARM

DI or 222 (40% reduction) SESARM Mammoth | Great Smokey | Shenandoah | Dolly Sods

ANHg - ANOg Cave Mtn 2015 WV, 2012
2011 NH,T 0.8 0.98 1.16 0.66 1.36
2011 NO,' 0.4 0.37 0.14 0.29 0.26
2020 NH,T 0.5 0.53 0.47 0.57 0.62
2020 NO,' 0.6 0.73 0.42 0.55 0.38

* Throughout the Southeastern US particulate nitrate formation is more sensitive to changes in

NO,' today than in the early to mid 2000’s

* NOx controls today should be more effective than in past years

* At most sites, SIA is equally sensitive to changes in NH," and NO,', but sites like Dolly Sods, WV

are still more sensitive to changes in NH,'

* Additional research is needed to understand the changing sensitivity and interplay of SIA to

NH3 and NOx emissions




Southeastern US Nitrate Pilot Field Study

Primary Objective:
* Assess the sensitivity of particulate matter, haze and reactive nitrogen to changes
ambient concentrations of NH; + NH,, HNO, + pNO; at Southeastern NP

* Assess the sensitivity of ammonium nitrate to the total regional NO, and NH,
emissions and, where possible, to point, mobile, and agricultural sources

Other Objectives

* Assess the changes in aerosol hygroscopicity and affect on haze

* Assess the impact of changing emissions on nitrogen chemistry and reactive
nitrogen deposition

* Reduction in ammonium sulfate and nitrate will redistribute the deposition of
reduced and oxidized N



Southeaster US Winter Nitrate Pilot Field Study

Field study Monitoring sites
e  Mammoth Cave, KY will be the primary monitoring site
 Deploy the mobile monitoring lab at the Mammoth Cave Air Quality Site

* Great Smoky Mountain, TN will be the secondary site

* Look Rock air quality sites
Deployment: January 8t to February 14th 2025

F“F: Mammoth Cave, KY




Current Measurements

Mammoth Cave Houchin Meadow Site

NADP mercury in litterfall sampling

NADP NTN and MDN

Nephelometer

IMPROVE

Ozone

CASTNET

RAWS fire weather

National Park Service meteorology

National Park Service all-in-one meteorology
NASA AERONET

PM sampling using Purple Air and QuantAQ
devices

Other monitoring in Mammoth Cave
* Visibility camera

NOAA Climate Reference Network
Soil Climate Analysis Network

Great Smoky Mtns Look Rock Site

 Same as MACA, including

e NADP NTN and MDN

* IMPROVE

e CASTNET

* NPS GPMP — ozone and NOx
NADP-AMON (2-week passive NH,)

ASCENT

* Monitoring site with detailed high
time resolution aerosol physical
and chemical monitoring

National Ecological Observatory
Network (NEON)

* Ncore




New Measurements

e Mammoth Cave
* PILS — 15-minute particulate ions, e.g. sulfate and nitrate

* URG — 24-hr gaseous and particulate concentrations
e Ammonia, ammonium, nitric acid, nitrate, sulfur dioxide, sulfate

* NOx

* Continuous nitric acid (HNO,)
» wet scrubber (Taehyoung Lee’s group)

* Continuous ammonia
* Air Sentry or Picarro instrument

e Great Smoky Mountains
* URG — 24-hr gaseous and particulate concentrations, 4 days a week
* Continuous ammonia
* Continuous nitric acid



Itric Acid Wet Scrubber
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Analyses

Standard data analyses
* explore known and unknown relationships

High time resolution thermodynamic modeling, similar to Da Pan’s work

* Assess the sensitivity of particulate nitrate formation to ammonia and oxidized N
availability

* Back trajectory analyses

* Link sources to the measured concentrations and look for relationship in nitrate
formation
* urban areas
e agricultural activities
* Industrial activities

Potential for using chemical transport model’s, e.g. CAMx and CMAQ in diagnostic
data assessments



Collaboration and Sharing of Results

* Data and interpretations will be made available to the regulatory and
scientific community

 Collaborations welcomed
* Will not address all important questions, e.g. particle nitrate formation in
urban settings
* Depending on results a larger scale collaborative study could be
conducted in following years.



guestions



Eastern US NOx Emissions and Nitrate Trends

Trends in 5-Yr Average Eastern US Total NH, and NO, 5-Year Average Eastern State Total NOx Emissions
Emissions and IMPROVE NH,NO, vs 5-Year Average IMPROVE NH,NO,
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Ambient Nitrate and NOx emissions have had large Eastern US NOx emissions have reduced at
reduction, while NH3 emission have increased twice the rate of nitrate concentrations



Changing Emissions and Atmospheric Chemistry

Eastern US, NEI Emissions Eastern U.S. NADP Wet Deposition
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e H,O, (peroxide) and O, are important in-cloud SO, and NOx to SO, and NO; oxidants
e As NOx/VOC ratio decrease, H,0, (peroxide) formation tends to increases

e As cloud PH increases O, oxidation rates and SO, absorption increase

e High PH favors particulate nitrate formation



Eastern US SO, Emissions and Sulfate Trends
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—S02 Emissions —Winter ASO4 —Summer ASO4 —Winter —Summer

e Steep declines in annual SO, emission rates since 1995
e Near linear response in sulfate from 1995 — 2007 (Malm et al., 2002; Hand et al., 2012)

e Since 2007 winter sulfate decreased as a smaller rate than during the summer causing the
change in the sulfate seasonality



Rapid changes in emissions and aerosol composition

(a) Cluster map

Western Regional Air Partnership
(WRAP):8 and 11 before and after 2015

Central States Air Resource Agencies
(CENSARA):4 and 6 before and after 2015

Lake Michigan Air Directors Consortium
(LADCO):6 and 14 before and after 2015

Mid-Atlantic Northeast Visibility Union
(MANE-VU):12 and 17 before and after 2015

Southeastern Air Pollution Control Agencies
(SESARM):12 and 20 before and after 2015
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(c}) NO, emissions
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(d) NH3 emissions
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* Rapid changes in aerosol composition because of SO, and NO, emission reductions

* Large uncertainties in NH; emissions and contributions of NH; to SIA formation

SO, and NO, emissions
decreased by 70% and
50%

Conc. of SO,% and NO,T
decreased and correlated
with emissions?

No clear or even inverse
correlation between NH,'
and NH; emissions

1Emission data from NEI Trend; 2Mean annual observations from CASTNET and AMoN.



Large uncertainties in N, simulations
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Chemical transport models have large uncertainties in emission inventories and deposition processes

Chen et al. (2019) found large differences between simulated (CMAQ) and observed (CASTNET + AMoN) fractions of NH,* in NH, (¢(NH}))
and fractions of NO; in NO,T (¢(NO3))

We can better constrain SIA formation and Nr partitioning using in-situ observations, but do we have enough observations?




e © Excess NO,/HNO,

® o NH, limited

e NH; reductions result in
PM2.5 reductions

Atmospheric Nitrogen e G5 6 €-> W)

B o Excess NH./NH,

e HNO; limited

e NH; reduction result in
PM, < reduction

Sroduction

—  Combustion

e NOx is oxidized forming nitric acid (HNO;) gas
e Nitric acid is generally neutralized by ammonia forming particulate ammonium
nitrates. This reaction is temperature and humidity dependent
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Particulate nitrate

* Secondary aerosol from NOXx
emissions

e Usually in the form of ammonium
nitrate (similar to ammonium
sulfate)

* In the fine mode making it very
efficient at scattering light and
creating haze.
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