

# Revisiting the Chemical Speciation Network's Shipping Practices

**IMPROVE Steering Committee Meeting** 

Melinda Beaver Socorro, NM October 29, 2024

#### Motivation for Revisiting the Chemical Speciation Network's (CSN) Current Shipping Practices

- CSN costs have increased without corresponding budget increases, and OAQPS is looking across the program at ways to cut costs to meet our budget.
  - Shipping costs have doubled (increased by \$400K/year) due to a mandatory government shipping contract change.
- We estimate that **CSN could save \$400K/year** by moving to ambient shipments (i.e., moving to lighter and slower shipments).



## **Current CSN Shipping Procedures**



|                  | Speed of Shipment                            | Weight of Shipment                          |
|------------------|----------------------------------------------|---------------------------------------------|
| 1-in-3 day sites | To sites: Overnight<br>From sites: Overnight | 4 lbs. of freezer packs<br>(15 lbs., total) |
| 1-in-6 day sites | To sites: 2-day<br>From sites: Overnight     | 4 lbs. of freezer packs<br>(11 lbs., total) |



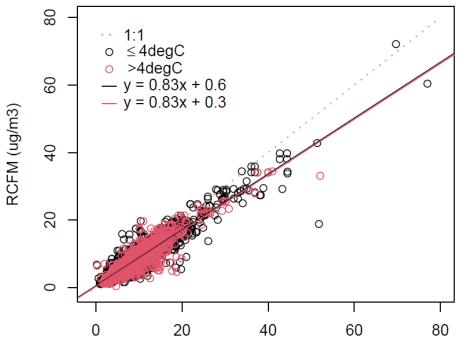
 Contract lab applies TT qualifier flag if shipments (from sites or between labs) arrive > 4°C (since 2015). Affects 10-30% of data records/year.



# Background Information on Cold Shipments in CSN

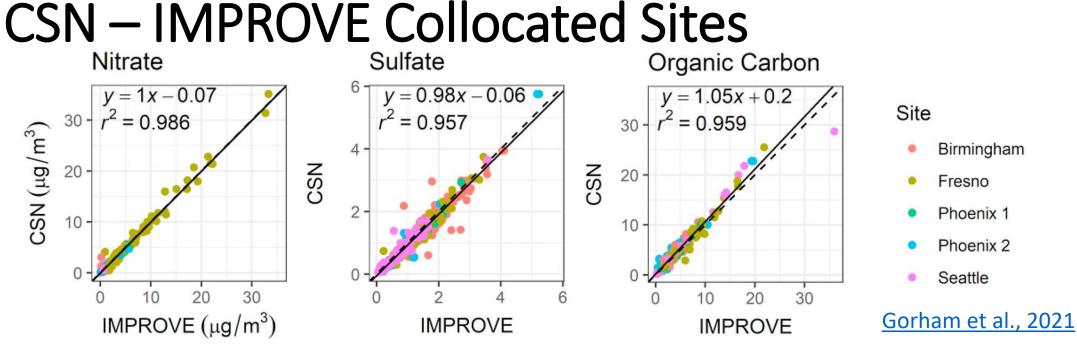
- CSN has used cold shipping since the beginning of the network in 2000.
- Why?
  - QA Guidance for PM<sub>2.5</sub> PTFE gravimetric samples is to ship samples cold to maximize time to post-weigh filters and reduce loss of volatile species.
    - However, CSN cut gravimetric analysis of CSN filters in 2014/2015.
    - CSN uses nylon filters to retain nitrate; quartz filters for carbon analysis.
  - A 2005 shipping study of collocated shipments from Atlanta, GA during summer months
    - Indicated sample precision for nitrate and OC could be adversely affected if cold shipping were eliminated.
    - Shipping was not as high of a percentage of the budget at that time, and cold shipping was retained.




# What can we learn about potential data impacts of ending cold shipping by looking at existing data?

- TT qualifier and Species-Specific analysis [not shown]
  - → network-wide medians for sulfate, nitrate, EC, OC unaffected by data from filters that arrived > 4° C.
- TT qualifier and Reconstructed Fine Mass (RCFM) analysis
- Collocated CSN IMPROVE data




# Reconstructed Mass vs $\rm PM_{2.5}$ FRM Mass using TT Qualifier

- Is there an impact on the Reconstructed Mass (RCFM) vs PM<sub>2.5</sub> mass relationship when shipments arrive > 4°C?
- Differences in slope could indicate warm (>4°C) shipments lose (or gain) mass.
- Details of analysis:
  - RCFM = 4.125\*Sulfur + 1.29\*Nitrate+Soil+1.8\*Chloride + EC + 1.4\*OC
  - Only PM<sub>2.5</sub> gravimetric method codes used (i.e., excluding PM<sub>2.5</sub> continuous methods).
  - Excluded RCFM data points with multiple qualifiers.
    - $\leq 4^{\circ}C \rightarrow$  no qualifiers
    - >4°C → TT qualifier
- When looking at all CSN sites no difference in slopes.



PM2.5 (ug/m3)





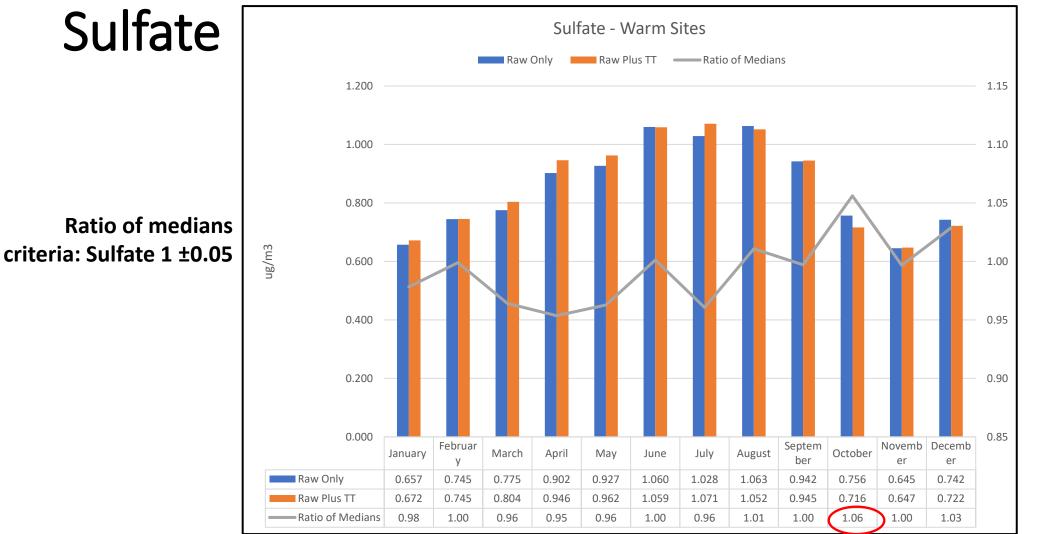
- IMPROVE ships at ambient; CSN ships cold
- Inter-network (CSN-IMPROVE) and intranetwork (CSN-CSN) precision are similar for the species likely to be most affected by shipping conditions (i.e., nitrate and OC).

|                                              | Nitrate | Sulfate | OC   |
|----------------------------------------------|---------|---------|------|
| <b>CSN-IMPROVE</b> Collocated Site Precision | 13%     | 7.8%    | 9.4% |
| <b>CSN-CSN</b> Collocated Site Precision     | 11%     | 8.5%    | 10%  |

# Summary and Conclusions

- EPA plans to stop cold shipping of CSN filters with the January 2025 sample shipments. Based on:
  - No apparent impacts on CSN data quality when recent shipments have arrived warm (i.e., when the TT flag was applied)
  - CSN no longer performs gravimetric analysis of PTFE filters
  - Practices in similar networks (IMPROVE and CASTNET)
  - CSN and IMPROVE collocated site comparisons
- 2025 CSN shipping calendar will reflect final changes.
  - For now, once sampled filters are received at the lab, we still plan to keep filters cold.
  - Plan to request operators avoid leaving sampled filters in direct sun or hot vehicles.
- We are also assessing additional CSN design changes that will be needed to meet the target budget.

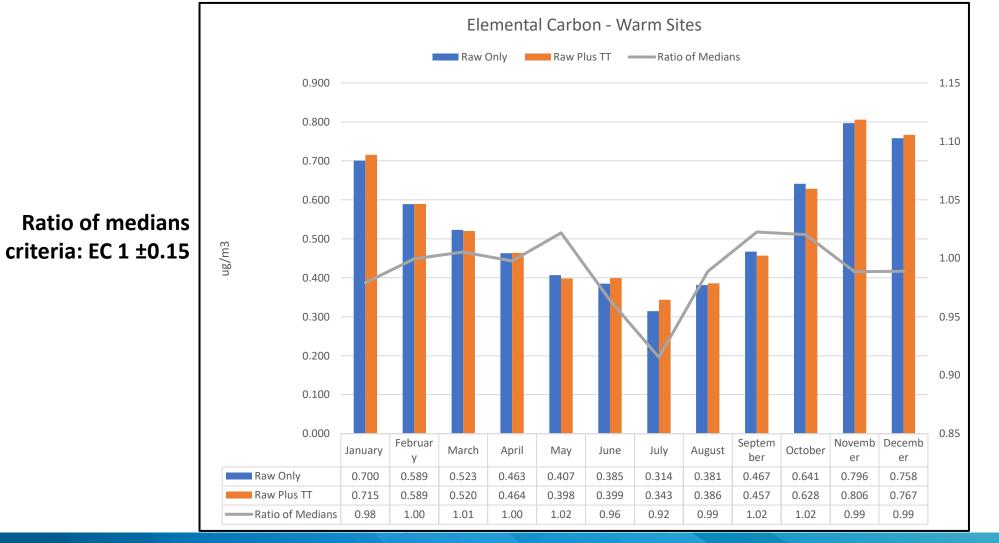





# Species-specific Analysis using TT Qualifier

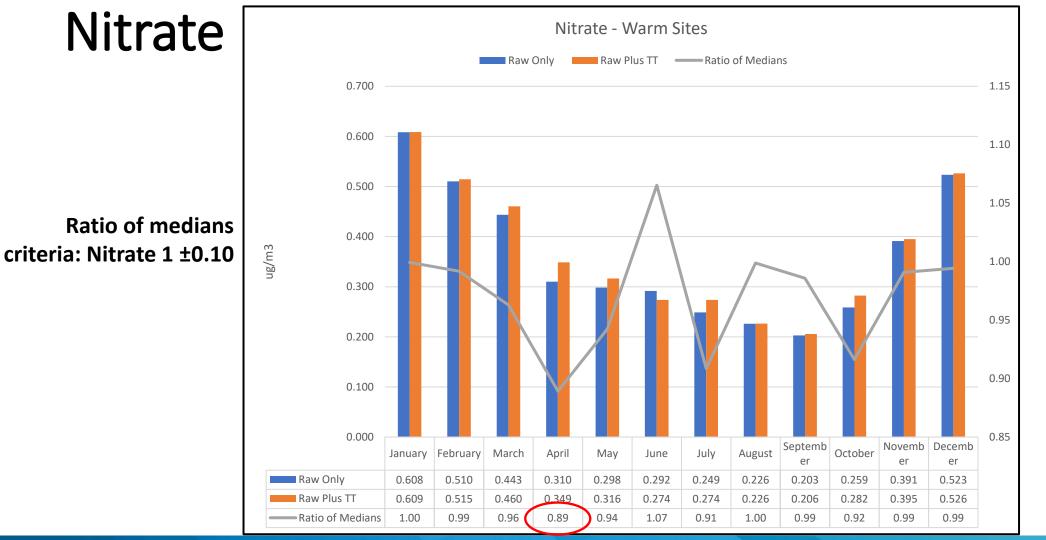
- Evaluated monthly CSN data in AQS for a subset of sites at warmer locations:
  - Arizona; New Mexico; Texas; Louisiana; Alabama; Florida; Georgia; and Rubidoux CA.
- Date Range 01/1/2020 to 12/31/2023
- Parameters: EC (88380); OC (88370); Sulfate (88403); and Nitrate (88306).
- Two data sets compared:
  - Raw data: all values in date range without any flag type.
  - Raw data + TT flag: all values in date range without any flag type + data with TT flag. Multiple TT flag combinations were not included.
- Criteria used as recommended by <u>Expert Panel</u> and <u>4-City Study</u>:
  - Ratio of means: 1±.15 OC and EC; 1±.10 nitrate; and 1±.05 sulfate.
  - Used ratio of medians because data are not normally distributed, and means are affected by outliers.




# Species-specific Analysis using TT Qualifier:

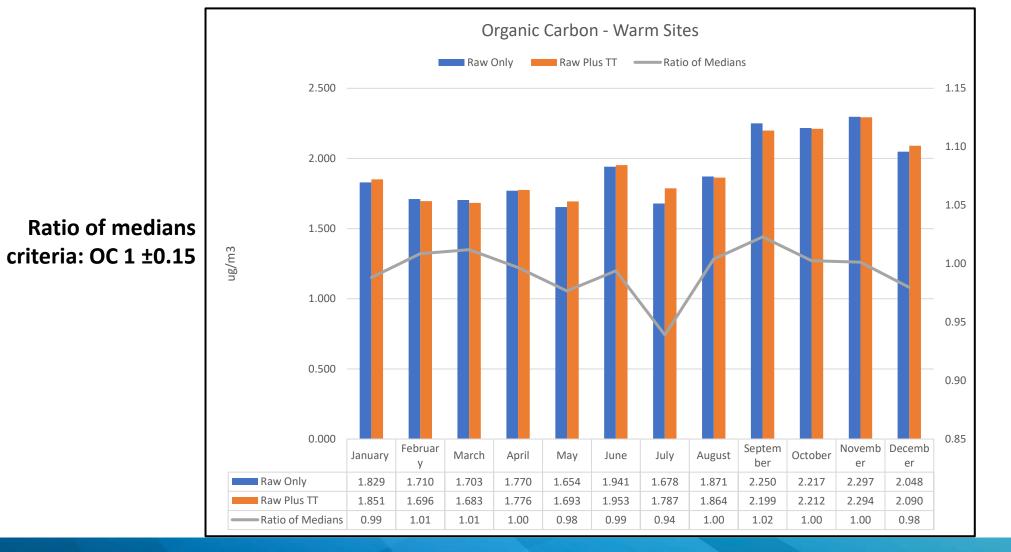


**U.S. Environmental Protection Agency** 


11

#### Species-specific Analysis using TT Qualifier: EC



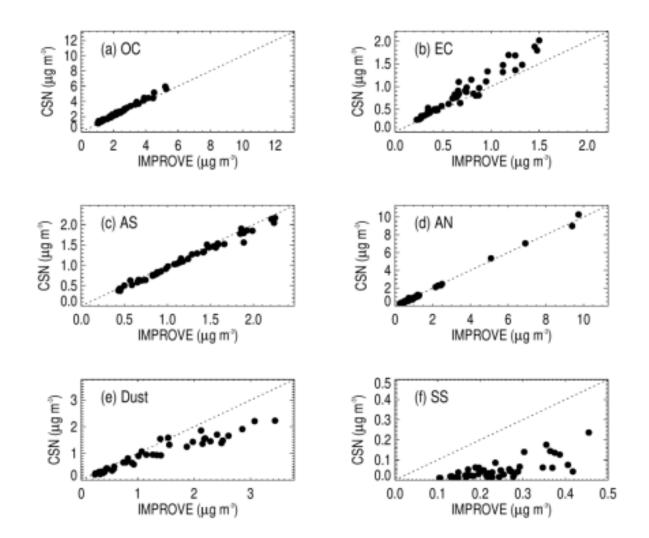



# Species-specific Analysis using TT Qualifier:



**U.S. Environmental Protection Agency** 

#### Species-specific Analysis using TT Qualifier: OC






## Species-specific Analysis using TT Qualifier: Conclusions

- Organic and Elemental Carbon met the Expert Panel Criteria using ratio of medians (1 ± 0.15) for all months at the warm climate sites.
- Sulfate met the Expert Panel Criteria using ratio of medians (1 ± 0.05) for all months <u>except October</u> (ratio 1.06) at the warm climate sites.
- Nitrate met the Expert Panel Criteria using ratio of medians (1 ± 0.10) for all months <u>except April (</u>0.89) at the warm climate sites.
- Based on this analysis of medians, no clear adverse impact of the TT flagged data.





#### CSN – IMPROVE Collocated Sites

- Six CSN IMPROVE collocated sites: Atlanta, Birmingham, Fresno, Phoenix, Pittsburgh, and Seattle
- Monthly means, 2016 2019

| Statistic                                | OC   | EC   | AS <sup>3</sup> | AN <sup>4</sup> | Dust | Sea<br>salt <sup>5</sup> |
|------------------------------------------|------|------|-----------------|-----------------|------|--------------------------|
| Average IMPROVE<br>(µg m <sup>-3</sup> ) | 2.36 | 0.69 | 1.21            | 1.44            | 1.21 | 0.24                     |
| Average CSN (µg m <sup>-3</sup> )        | 2.59 | 0.84 | 1.15            | 1.40            | 0.90 | 0.05                     |
| Bias <sup>1</sup> (%)                    | 11   | 21   | -6              | -6              | -20  | -81                      |
| Error <sup>2</sup> (%)                   | 11   | 19   | 6               | 8               | 21   | 85                       |
| r                                        | 0.99 | 0.97 | 0.99            | 1.00            | 0.96 | 0.71                     |
| IMP/CSN                                  | 0.91 | 0.82 | 1.06            | 1.03            | 1.34 | 4.75                     |

IMPROVE Report (Figure 1.16 and Table 1.9)

# 2005 Shipping Study

- Conducted in South DeKalb, GA during summer when OC was high, and nitrate was low.
- Collocated samples were collected; some sample sets shipped cold, and some sample sets shipped at ambient conditions.
- Evaluation criteria were based on Expert Panel recommendations and the <u>4-City Study</u>:
  - Mean ratios of 1±.10 mass, nitrate, and ammonium; 1±.05 sulfate; and 1±.15 OC and EC.
  - Correlation coefficients (R<sup>2</sup>) of ≥0.90 for mass, nitrate, and ammonium; ≥0.95 for sulfate; and ≥0.85 for OC and EC.
  - Precision (CV) of 10% for ions and 15% for carbon

| Species          | N of<br>Pairs | Regression<br>Slope, Intercept | Criteria CV | Correlation | Criteria<br>Correlation | Mean<br>Concentration<br>Ratio<br>(cold/ambient) | Ambient CV | Cold CV |
|------------------|---------------|--------------------------------|-------------|-------------|-------------------------|--------------------------------------------------|------------|---------|
| Mass (Teflon)    | 28            | 1.03, 0.66                     | N/A         | 0.98        | 0.90                    | 1.07 +/- 0.14                                    | 0.05       | 0.06    |
| OC (quartz)      | 33            | 1.00, -0.76                    | 15%         | 0.86        | 0.85                    | 0.87 +/- 0.10                                    | 0.08       | 0.06    |
| EC (quartz)      | 31            | 0.91, 0.03                     | 15%         | 0.99        | 0.85                    | 0.94 +/- 0.12                                    | 0.09       | 0.09    |
| Nitrate (Nylon)  | 33            | 1.02, 0.04                     | 10%         | 0.70        | 0.90                    | 1.18 +/- 0.49                                    | 0.10       | 0.08    |
| Sulfate (Nylon)  | 33            | 0.98, -0.05                    | 10%         | 0.99        | 0.95                    | 0.98 +/- 0.05                                    | 0.02       | 0.03    |
| Ammonium (Nylon) | 33            | 0.94, -0.06                    | 10%         | 0.99        | 0.90                    | 0.91 +/- 0.09                                    | 0.04       | 0.05    |



## 2005 Shipping Study: Conclusions

- No species showed consistent statistical or practical differences in average measured concentration although other sites where volatile species like nitrate and/or OC are larger contributors to total mass may yield different results and should be investigated.
- Important differences between cold- and ambient-shipped samples may occur during other months, especially spring and fall when nitrate and OC are larger contributors to PM<sub>2.5</sub> mass and ambient temperatures can still be warm.
- If cold-shipping is eliminated, sample precision may be degraded for OC and nitrate.



#### Outline

- Background on CSN's cold shipping practice
- Review current shipping procedures
- What can we learn about potential data impacts of ending cold shipping by looking at existing data?
  - TT qualifier and species-specific analysis
  - TT qualifier and Reconstructed Fine Mass (RCFM) analysis
  - Collocated CSN IMPROVE data
- Summary and Conclusions



#### Motivation for Revisiting the Chemical Speciation Network's (CSN) Current Shipping Practices

- CSN costs have increased without corresponding budget increases, and OAQPS is looking across the program at ways to cut costs to meet our budget.
  - Shipping costs have doubled (increased by \$400K/year) due to a mandatory government shipping contract change.
- Plan to stop cold shipments for CSN:
  - Beginning with the January 2025 samples.
  - We estimate that **CSN could save \$400K/year** by moving to ambient shipments (i.e., moving to lighter and slower shipments).

