Carbon Research Update: Microplastic and biomass burning profiles with a Photoionization Time-of-Flight Mass Spectrometer (PI-TOFMS)

> John G. Watson Judith C. Chow Patrick Martens Xiaoliang Wang Patrick Myers Matt Claassen

Presented at IMPROVE Steering Committee, Socorro, New Mexico October 29, 2024

PI-TOFMS system arrived in June, 2024 and was interfaced to the DRI 2015 Carbon Analyzer, Patrick Martens recruited

Patrick Martens, Dr. rer. nat. Recently graduated in Analytical Chemistry/ Environmental Science from the University of Rostock, Rostock, Germany Previous research focused on combustion aerosols and their toxicological effects Now broadening scope to microplastic research and postwildfire soil water repellency

The(PI-TOFMS) uses high intensity lasers for soft ionization of volatilized molecules from the carbon analyzer

ŞDRI

The output consists of mass to charge ratios for different temperature fractions

Carbon analyzer thermogram of lignin

Initial work is examining profiles for different microplastics

Plastic Production by Polymer in the USA, EU, China, and India in from 2002 -2014

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production,
use, and fate of all plastics ever made. Sci. Adv., 3(7).
https://doi.org/10.1126/SCIADV.1700782

Abbreviation	Material	Form
ULDPE	Ultra low density poltethylene	pellet
LDPE.1	Low-density polyethylene	pellet
LDPE.2	Low-density polyethylene	pellet
LLDPE.1	Linear low-density polyethylene	pellet
LLDPE.2	LLDPE made with metallocene catalyst	pellet
MDPE	Medium-density polyethylene	pellet
HDPE.1	High-density polyethylene	pellet
HDPE.2	High-density polyethylene	pellet
PP	Polypropylene	pellet
PEST	Polyester poplin fabric	fabric coupons
PET.1	Polyethylene terephthalate	pellet
PET.2	Recycled Polyethylene terephthalate	pellet
EVA	20% Ethylene-vinyl acetate	pellet
ABS	Acrylonitrile-Butadiene-Styrene	pellet
EPS	Expanded polystyrene foam	foam beads
PS	Polystyrene	pellet
PA6	Nylon 6	pellet
PA66	Nylon 6,6	pellet
PVC.1	Polyvinyl chloride	pellet
PVC.2	Polyvinyl chloride with phthalates	pellet (flexible)
CR	Crumb rubber from used tires	crumbed particles
CA*	Cellulose acetate	powder*

Initial tests show vaporization at different temperatures for different plastics, but these are within the OC3 fraction for the most part. OC3 needs finer fractions for improved discrimination

- Thermal decomposition occurs in a single mass loss step for <u>most</u> materials (e.g., polystyrene PS, polyethylene terephthalate PET)
- Some materials degrade almost completely (99%) others form char (e.g., PET and crumb rubber)
- No major differences in thermal decomposition temperatures between similar plastics, see medium and high-density polyethylene
- Plastics from different polymer types can be separated by their thermal decomposition temperature
 - Peak decomposition for different plastic types
 - PS: ca. 420 °C
 - PET: ca. 440 °C
 - HDPE + MDPE: ca. 480 °C
 - Crumb rubber (tire particles): ca. 380 °C
- What about natural materials that may cover particles as, for example, a biofilm?

Polystyrene profile is in OC3

Dimer: mz 204

Trimer mz 306

Polyethylene terephthalate profile is also OC3, but with a different molecular profile

Polymer: mz 210

Polymer: mz 204

Polymer: mz 254

Tire dust has a more complex thermal and molecular profile

Biomass laboratory burning tests are examining profiles for fresh and aged emissions Fresh and aged burn archived samples will be analyzed for comparison

