An interlaboratory comparison of elemental loadings on CSN PM_{2.5} samples via energydispersive XRF and single quadrupole ICP-MS

Colleen Marciel F. Rosales¹, Frank Weber², Tracy L. Dombek², Keith Levine², Nicholas J. Spada¹, Nicole P. Hyslop^{1*}

¹Air Quality Research Center, University of California, Davis, California, USA 95616 ²RTI International, Research Triangle Park, North Carolina, USA 27709 **cfrosales@ucdavis.edu**

Motivation

- Pollutant concentrations since inception of CSN have decreased
- →Many elements are at/below the detection limits of current analytical techniques
- →Can we use a low-cost ICPMS solution to achieve better detection of the elements?

Measured elements by XRF, reported to CSN (2019-2020)

- 4 elements measured by XRF cannot be measured using the applied ICPMS protocol (Si, S, Cl, Br)
- All elements regularly measured below MDL by XRF can be measured via ICPMS
- Note: MDLs are calculated differently for XRF and ICPMS

XRF & ICPMS

Image from Thermo Fisher

	XRF	ICPMS
Sample Preparation	None	Acid digestion
Sample run time (multi- element)	~1 hour	10-15 minutes
Calibration Standards	Single or multi-element	Multi-elemental standard
Frequency of calibration	Yearly	Before every run
Sample Preservation	Nondestructive	Destructive
Sample Preservation	Nondestractive	Destructive

Sample Selection + Analyses

- Archived CSN samples in UCD (analyzed via XRF): January 2019 August 2020
- Batch 1 (N=209): 33 elements (10th, 50th, and 90th percentile sample for each element)
- Batch 2 (N=146): Collocated samples from 3 sites
 - 18 from Rutgers, NJ; 38 from Dudley Square (Boston, MA); 20 from Rubidoux (Riverside, CA)
- Batch 3 (N=194) : Higher total elemental concentrations based on UCD XRF

Sent to RTI ↓ XRF ↓ ICPMS

UCD XRF - ICPMS

- Measurements compare well for elements measured above MDL > 10% of the time.
 - Only 14 elements meet this criterion for XRF
- Ca, Cr and Ni agreement is poor even above MDL estimates

 \rightarrow measurements not quantifiable by one or both methods or the extraction (leaching) is incomplete.

percentage = % of values above UCD XRF MDL

In these plots, values less than 10⁻³ (for Na, Al, K, Ca, Fe, Zn, and Mg) or 10⁻⁵ (for Ti, Cu, Pb, Cr, Ni, Mg, Mn, V) including negative values, were assigned a floor value of 10⁻³ or 10⁻⁵, respectively.

Considerations:

Were the elements detected?

Intra-method: Method detection limits

Are the reported concentrations reliable?

Inter-method: XRF-ICPMS intercomparison

Intra-method: inter-elemental comparison; collocated samples (precision)

Was the ICPMS extraction complete?

Evaluated using reference materials (NIST SRM 1648a, 1633)

Detection Rates in this Study

Measured elements by XRF, reported to CSN (2019-2022, N=549)

Measured elements by ICPMS, N=549

% of measurements above MDL

Considerations:

Were the elements detected?

Intra-method: Method detection limits

Are the reported concentrations reliable?
Inter-method: XRF-ICPMS intercomparison
Intra-method: inter-elemental comparison; collocated samples (precision)

Was the ICPMS extraction complete?

Evaluated using reference materials (NIST SRM 1648a, 1633)

• Lighter elements show good collocated-routine agreement for both ICP-MS and XRF (K, Zn, Fe)

 Lighter elements show good collocated-routine agreement for both ICP-MS and XRF (K, Zn, Fe)

× XRF √ RQ ICPMS

- Lighter elements show good collocated-routine agreement for both ICP-MS and XRF (K, Zn, Fe)
- Lower ICP-MS MDL are obvious
- Collocated measurements agreeing down to much lower concentrations for ICP-MS than XRF (As, Cd, Pb, Zr, Rb, Sr)

× XRF √ RQ ICPMS

× XRF ? RQ ICPMS

- Lighter elements show good collocated-routine agreement for both ICP-MS and XRF (K, Zn, Fe)
- Lower ICP-MS MDL are obvious
- Collocated measurements agreeing down to much lower concentrations for ICP-MS than XRF (As, Cd, Pb, Zr, Rb, Sr)
- ICPMS measurements are greater than the MDL more than 10% but less than 50% of the time (Cr, Cs)
- Recovery not acceptable or not evaluated (Ba, P,

✓ XRF

- Polyatomic interferences (S, Si) and detector limitations (S, Br, Cl) make these elements difficult to measure via ICP-MS.
- Since these filters are reanalyzed with RTI XRF, Br and CI may be 15-20 % different than the original reported UCD XRF concentration due to Br and CI lost in the vacuum of the XRF.

Considerations:

Were the elements detected?

Intra-method: Method detection limits

• Are the reported concentrations reliable?

Intra-method: inter-elemental comparison; collocated samples (precision)

Inter-method: XRF-ICPMS intercomparison

• Was the ICPMS extraction complete?

Evaluated using reference materials (NIST SRM 1648a, 1633)

SRM Recoveries - ICPMS

- Some elements cannot be extracted with only HNO₃
- Some elements did not have good recoveries, but XRF –ICPMS intercomparison is good/acceptable
 - may just need longer than 2 hours for extraction or comparable loadings for SRM and sample
 - sample mean mass: ~100 ug, max ~500 ug vs 10-20 mg of SRM (homogeneity issues)

Some elements: Good inter & intra-method comparison, but bad recovery

Intermethod

Intra-

method

Some elements: Good inter-elemental comparison, but bad recovery

Next steps

1. Evaluating extraction efficiency

- Troubleshoot: element recoveries for SRM that don't align with inter- and intra-method agreement on CSN samples
 - Smaller amount of SRM (1-2mg) for extraction
 - Test out different digestion method for the SRM (5% HNO_3 + small % of HF)
 - Developing reference materials at ambient loadings to test the extraction
- 2. ICP-MS analysis on nylon filters
- 3. Quantitative comparison of the data
- 4. Evaluate the current list of elements being measured
- Additional heavier elements can be measured by ICP-MS

Guide to the plots

In all plots, dashed line is 1:1 Solid lines are fits

- Were the measurements above the UCD XRF MDL at least 10 % of the time?
- Out of N=594, what % of were measurements above the stated **UCD XRF MDL**?
- Were the measurements above the **ICPMS MDL** at least 10 % of the time?
- Out of N=594, what % of were measurements above the stated ICPMS MDL?
- Did the element have an **acceptable recovery** based on the digestion of **SRM 1648a**?
- Which of the MDL for this element is lower, UCD XRF MDL or ICPMS MDL?

Inter-method: XRF on y, ICPMS on x or vice versa

Intra-method: XRF on both y and x or ICPMS on both y and x

Excludes S, Si, Br, Cl

Preliminary conclusions

- Based on the current leaching method, of the 14 elements evaluated:
 - Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb have >10% samples above UCD XRF MDL
 - Mg, V, Mn, Cu, Zn, and Pb are recommended to be analyzed with ICP-MS with a dilute acid digestion (5% HNO3 + hot block) as described (based on recovery).
- Of the remaining 19 elements not evaluated, we recommend measuring
 - S, Si, Cl, and Br using XRF.
 - Co, As, Se, and Cd with ICP-MS based on both acceptable recovery and frequency of detection above MDL.
 - P, Rb, Sr, Zr, Ag, Sn, Sb, Cs, Ba, and Ce using ICP-MS based on frequency of detection above MDL only.
- In total

18/33 elements with XRF

20/33 elements with ICP-MS

6/33 elements with either XRF or ICP-MS

 Performing ICP-MS in addition to XRF will decrease number of non-detects for elements where ICPMS has lower MDL.

UCD XRF

• Na, <u>Mg</u>, Al, K, Ca, Ti, <u>V</u>, Cr, <u>Mn</u>, Fe, Ni, <u>Cu</u>, <u>Zn</u>, (and <u>Pb***</u>)

• S, Si, Cl, and Br

 Mg, V, Mn, Cu, Zn, and Pb with a dilute acid digestion as described (based on recovery).

ICPMS – 5% HNO₃

- Co, As, Se, and Cd with ICP-MS based on both acceptable recovery and frequency of detection above MDL.
- P, Rb, Sr, Zr, Ag, Sn, Sb, Cs, Ba, and Ce using ICP-MS based on frequency of detection above MDL only.

Lighter elements show good collocated-routine agreement for both ICP-MS and XRF.

✓ XRF

- Polyatomic interferences (S, Si) and detector limitations (S, Br, Cl) make these elements difficult to measure via ICP-MS.
- Since these filters are reanalyzed with RTI XRF, Br and CI may be 15-20 % different than the original reported UCD XRF concentration due to Br and CI lost in the vacuum of the XRF.

Considerations:

Were the elements detected?

Intra-method: Method detection limits

Are the reported concentrations reliable?

Inter-method: XRF-ICPMS intercomparison

Intra-method: inter-elemental comparison; collocated samples (precision)

Was the ICPMS extraction complete?

Evaluated using reference materials (NIST SRM 1648a, 1633)

Intra-method, inter-elemental

- Pairs selected from *a priori* knowledge of the elements' association.
- Elements from common source are often correlated: soil elements (K, Fe, Cu) or elements that may be from anthropogenic urban sources (Sb, As, Pb, Cu, Ni, Cr, V).
- ICPMS inter-element correlations are much tighter than UCD XRF correlations → better intramethod measurement precision for ICPMS.

The plots to the left of the diagonal show ICPMS results only. The plots to the right of the diagonal show XRF results only.

Comparison of Recoveries – RTI ICPMS and Canada NAPS

See: Validation of a Simple Microwave-Assisted Acid Digestion Method Using Microvessels for Analysis of Trace Elements in Atmospheric PM_{2.5} in Monitoring and Fingerprinting Studies. Celo, V., Dabek-Zlotorynska, E., Mathieu, D., Okonskaia, I. The Open Chemical and Biochemical Methods Journal, 2010. http://dx.doi.org/10.2174/1875038901003010143

- 2 mL 40% HNO₃
- microwave 1 min 165 °C, then 15 min 175 °C

XRF: 22 elements (Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Zn, Se, Br, Rb, Sr, Cd, Sn, Cu, Cs, Ba, Pb)

ICPMS: 20 metals (Ag, Al, As, Ba, Be, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Se, Sb, Sn, Sr, Tl, V, Zn)

This study

- 25 mL 5.0 % HNO₃
- Heated graphite block for two hours at 95 ± 5 °C

Elements (star denotes non certified)	Canada NAPS recovery (<u>Celo,</u> 2010)	This study						
		T1-5x	T2-5x	T3-5x	T1-100x	T2-100x	T3-100x	
AI	50				26	26	29	
Ti*	28	10	10	10				
V	83	86	93	94				
Cr	30	15	12	17				
Mn	94	76	75	81				
Fe	82				46	46	51	
Со	81	100	102	108				
Ni	89	58	59	63				
Cu	97	83	82	86				
Zn	116				87	88	97	
As	104	99	97	104				
Se	107	88	84	88				
Cd	107	85	85	92				
Sb	74	67	66	70				
Ва	82							
Ce	62	45	45	47				
Pb	101				94	96	102	

Elements not listed were not reported in the table of recoveries in Celo, 2010 (excludes Mo and La)

Atomic Number	Element	XRF > 10% MDL?	% above MDL	RQ ICPMS > 10 % MDL?	RQ ICPMS 1648a recovery acceptable? (5% HNO3 + 2 hour hot block digestion)	Notes	RECOMMENDATION	CANADA NAPS
4	Be							ICPMS
11	Na	YES	43	YES	NO		XRF	
12	Mg	YES	28	YES	YES (1 out of 3 trials)		XRF or ICPMS	
13	Al	YES	42	YES	NO		XRF	XRF, ICPMS
14	Si	YES	78	NO (not measured)	NO (not measured)		XRF	XRF
15	Р	NO	10	YES	not evaluated		ICPMS	
16	S	YES	100	NO (not measured)	not evaluated		XRF	XRF
17	CI	YES	50	NO (not measured)	not evaluated		XRF	
19	К	YES	99	YES	NO	OK MDL, OK XRF-ICPMS inter-method	XRF	XRF
20	Ca	YES	94	YES	NO	OK with SF ICPMS	XRF	XRF
22	Ti	YES	52	YES	NO		XRF	XRF
23	V	YES	17	YES	YES		XRF or ICPMS	XRF, ICPMS
24	Cr	YES	19	YES	NO	Cr is "noise" above MDL in XRF - ICPMS intercomparison; Cr is known to be better extracted with HF (+microwave digestion?)	XRF	XRF
25	Mn	YES	16	YES	YES		XRF or ICPMS	XRF, ICPMS
26	Fe	YES	96	YES	NO	OK MDL, OK XRF-ICPMS inter-method	XRF	XRF, ICPMS
27	Со	NO	2	YES	YES		ICPMS	ICPMS
28	Ni	YES	16	YES	NO	Ni is known to be better extracted with HF (+ microwave digestion?)	XRF	XRF, ICPMS
29	Cu	YES	20	YES	YES		XRF or ICPMS	XRF, ICPMS
30	Zn	YES	45	YES	YES	OK MDL, OK XRF-ICPMS inter-method	XRF or ICP <mark>MS</mark>	XRF, ICPMS
33	As	NO	8	YES	YES		ICPMS	ICPMS
34	Se	NO	5	YES	YES		ICPMS	XRF, ICPMS
35	Br	YES	37	NO	not evaluated		XRF	XRF
37	Rb	NO	3	YES	NO		ICPMS	XRF
38	Sr	NO	9	YES	NO		ICPMS	XRF, ICPMS
40	Zr	NO	3	YES	not evaluated		ICPMS	
42	Мо							ICPMS
47	Ag	NO	1	YES	YES		ICPMS	ICPMS
48	Cd	NO	2	YES	YES		ICPMS	XRF, ICPMS
49	In	NO	4	NO	not evaluated		neither	
50	Sn	NO	2	YES	not evaluated		ICPMS	XRF, ICPMS
51	Sb	NO	3	YES	not evaluated		ICPMS	ICPMS
55	Cs	NO	3	YES	NO		ICPMS	XRF
56	Ва	NO	4	YES	not evaluated		ICPMS	XRF, ICPMS
58		NU	2	YES	INU INU		ICPMS	
0								ICPIVIS
82	Pb	YES	15	YES	YES	Pb is "noise" above MDL in XRF - ICPMS intercomparison	XRF or ICPMS	XRF, ICPMS

Appendix: All elements

Guide to the plots

In all plots, dashed line is 1:1 Solid lines are fits

- Were the measurements above the UCD XRF MDL at least 10 % of the time?
- Out of N=594, what % of were measurements above the stated **UCD XRF MDL**?
- Were the measurements above the **ICPMS MDL** at least 10 % of the time?
- Out of N=594, what % of were measurements above the stated ICPMS MDL?
- Did the element have an **acceptable recovery** based on the digestion of **SRM 1648a**?
- Which of the MDL for this element is lower, UCD XRF MDL or ICPMS MDL?

Inter-method: XRF on y, ICPMS on x or vice versa

Intra-method: XRF on both y and x or ICPMS on both y and x

Excludes S, Si, Br, Cl

XRF-Only elements

CSN samples

- *N* = 549
- January 2019 June 2022
- 10th, 50th, and 90th percentiles in the network for each element
- High concentrations of Pb, V, Ni, Cr, and As

- Routine-collocated sample pairs for sample precision estimates
 - Rutgers, NJ
 - Dudley Square, Boston, MA
 - Rubidoux, Riverside, CA
 - Bakersfield, CA
 - G.T. Craig, OH
 - Deer Park, Houston, TX

5% HNO₃ + graphite block (90 mins 95°C)

Considerations:

Were the elements detected?

Intra-method: Method detection limits

• Are the reported concentrations reliable?

Inter-method: XRF-ICPMS intercomparison

Intra-method: inter-elemental comparison; collocated samples (precision)

• Was the ICPMS extraction complete?

Evaluated using reference materials (NIST SRM 1648a, 1633)

XRF and ICPMS MDL

- For most elements up to Zn, XRF can detect more than 10% of the time above MDL.
- Because of its lower MDL for most elements, ICPMS can detect elements in samples with lower elemental concentrations.

Na Ma A Si Ρ S CI K Са Ti Cr Mn Fe Co N Cu Zn As Se Br Rb Sr Zr Ag Cd · 🗌 In Sn Sb Cs Ba Ce Pb 20 40 60 80 100 0 % of measurements above MDL

Measured elements by XRF, reported to CSN (2019-2022, N=549)

Measured elements by ICPMS, N=549

• XRF MDL are high compared to most elements measured by ICP-MS

P, K, and Zn Na, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, As, Se, Rb, Sr, Zr, Ag, Cd, In, Sn, Sb, Cs, Ba, Ce, Pb	XRF MDL is lower	ICPMS MDL is lower
	P, K, and Zn	Na, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, As, Se, Rb, Sr, Zr, Ag, Cd, In, Sn, Sb, Cs, Ba, Ce, Pb

Element	UCD MDL	Blank Median	UCD Percent Above MDL	ICPMS MDL	ICP Percent Above MDL
Na	0.791596	0.0001186	43.3515	0.169934	96.1749
Mg	0.410342	0.0451273	28.4153	0.025551	99.2714
Al	0.23384	0.924072	41.5301	0.1238	99.0893
Р	0.0244645	0	9.83607	0.104349	21.6758
К	0.0767471	0.0963032	99.2714	0.13369	97.2678
Са	0.0711451	0.0348684	93.9891	0.0430899	87.6138
Ti	0.0318934	0.021348	52.459	0.0010327	98.9071
V	0.004392	0	17.122	0.000157343	98.725
Cr	0.0271359	0.0467284	19.3078	0.00103083	99.6357
Mn	0.0488971	0.0697368	15.847	0.000905541	99.2714
Fe	0.128732	0.23127	95.9927	0.06664	99.2714
Со	0.0225206	0.0149436	2.00364	0.000880229	15.4827
Ni	0.0169761	0.0105554	15.847	0.00163975	99.2714
Cu	0.0675928	0.0902546	19.8543	0.0115674	95.2641
Zn	0.0981903	0.0279896	45.3552	0.26422	99.4536
As	0.00107128	-0.000593	8.37887	0.000595477	97.9964
Se	0.0316518	0.0240758	4.55373	0.00208469	58.2878
Rb	0.0414033	0.0315476	3.46084	0.000159129	97.9964
Sr	0.03547	0.0447122	8.74317	0.000283082	99.0893
Zr	0.187611	0.196164	3.09654	0.00100512	84.153
Ag	0.170774	0.211701	1.45719	0.000131314	65.0273
Cd	0.189166	0.221308	2.00364	0.000793441	26.5938
In	0.199677	0.263292	3.64299	0.000143529	3.64299
Sn	0.23887	0.339789	2.00364	0.0099216	34.6084
Sb	0.238031	0.327514	2.91439	0.000137836	98.9071
Cs	0.372381	0.514546	3.27869	0.000120559	27.6867
Ba	0.46248	0.755956	3.64299	0.00077041	99.2714
Ce	0.565944	0.876988	1.63934	0.000125839	91.439
Pb	0.0823247	0.145997	14.5719	0.000618232	99.2714

How MDL were calculated

Analytical MDL calculations

UCD XRF

ICP-MS

 $MDL = P_{95} - median$

- P95 = 95th percentile of at least 50 lab blanks
- median = median of at least 50 lab blanks

- EPA-821-R-16-006: Definition and Procedure for the Determination of the Method Detection Limit, Revision 2
- The greater value when comparing the spiked and the blank was taken as the MDL.

ICP-MS Analytical MDL

EPA-821-R-16-006: Definition and Procedure for the Determination of the Method Detection Limit, Revision 2

$$MDL_{S} = t_{(n-1, 1-\alpha=0.99)}S_{S}$$

where:

 MDL_s = the method detection limit based on spiked samples

- $t_{(n-1, 1-\alpha = 0.99)}$ = the Student's *t*-value appropriate for a single-tailed 99th percentile *t* statistic and a standard deviation estimate with n-1 degrees of freedom. See Addendum Table 1.
 - S_s = sample standard deviation of the replicate spiked sample analyses.

where:

- MDL_{b} = the MDL based on method blanks
 - \overline{X} = mean of the method blank results (use zero in place of the mean if the mean is negative)
- $t_{(n-1, 1-\alpha = 0.99)}$ = the Student's *t*-value appropriate for the single-tailed 99th percentile *t* statistic and a standard deviation estimate with n-1 degrees of freedom. See Addendum Table 1.

 $MDL_b = \overline{X} + t_{(n-1,1-\alpha=0.99)}S_b$

 S_{b} = sample standard deviation of the replicate method blank sample analyses.

RTI XRF

- The uncertainty is calculated for each sample and element when analyzed. (See <u>Gutknecht, et al 2010</u>)
- MDL = 3x average uncertainty from from 10 blank filters.

Two separate groups on XRF for select elements

