IMPROVE Carbon Analysis Update

Judith C. Chow (judith.chow@dri.edu) Xiaoliang Wang Matt Claassen John G. Watson Patrick Myers Steven Kohl

Desert Research Institute, Reno, NV

Presented at: IMPROVE Steering Committee Meeting Kalispell, MT October 17, 2023

Objectives

- Report status of IMPROVE carbon analyses
- Present comparability between Series I and II DRI Model 2015 Multiwavelength Thermal/Optical Carbon Analyzer (Aerosol Magee Scientific, www.aerosolmageesci.com)

DRI's Environmental Analysis Facility (EAF) continuously operates 10-13 Model 2015 Multiwavelength Carbon Analyzers (January 2016- September 2023, analyzed ~290,750 samples with ~136,015 for IMPROVE)

EAF Carbon Laboratory (Magee Scientific, Berkeley, CA and Aerosol, d.o.o., Ljubljana, Slovenia)

Carbon Laboratory Operations

- Received an average of 1,505 IMPROVE samples per month between October 2022 and September 2023 (varied from 0 to 3,200).
- Analyzed 15,979 IMPROVE samples from October 2022 to September 2023.
- Average 10-13 hours/day, 5 days a week except for June-August period (4-6 hours/day, 5 days/week) during old/new contract transition.
- Matt Claassen and Patrick Myers are the core of the EAF Carbon team (2021-present).

Matt

2022 sample analysis was completed in July 2023

Sampling Period	Samples Received Dates	Number of Samples Received	Analysis Completion Date
10/1/22 - 12/31/22	10/12/22 - 6/27/23	4,455	7/12/2023
1/3/23 - 9/18/23	6/1/23 - 9/28/2023	12,350	Late Dec. 2023 – Mid Jan. 2024 (est*)

Carbon throughput averaged ~ 69 samples per workday (~ 8 samples per day per analyzer)* (October 2022- September 2023)

Analysis Date

*Excludes calibration runs and other projects

Carbon backlog and throughput remained stable

(October 2022– September 2023)

Analysis Month

Streamlined data processing and validation have reduced reanalysis rates and shortened the reporting time

Sample reanalysis rate reduced by ~40%

Sample validation to report duration reduced by ~70%

Updated software monitors analyzer status and tracks maintenance and calibration status

Application of a neural network can further streamline data validation process

- Able to detect complex input combinations or single points of error
- Assign conservative warning (awaiting staff confirmation)
- Flag data by a complementary method
- Reveal insights about analyzer behavior or deposit trends

Test of Comparability Between Series I and II DRI Model 2015 Carbon Analyzers

Series I

Series II

Auto-loader

Good correlations between Series I and II for TC, OC, and EC (n = 135)

Series I and II carbon analyzers show reasonable comparability among carbon fractions

EC3 Series I (µg/filter)

EC2 Series I (µg/filter)

EC1 Series I (µg/filter)

PM_{2.5} Sampler (DRI Reno campus, NV)

Sucrose runs show similar patterns between Series I and II

Temperature plateau and baseline adjustments are needed for Series II Model 2015

- Series II overshoots temperatures somewhat
- Series II cools much faster

• Series II carbon signals should return to baseline

Similar comparability for TC, OC, and EC between DRI Model 2001 and Series I Model 2015 (n = 1021)*

*Chow et al 2015 AAQR

Similar comparability in carbon fractions between DRI Model 2001 and Series I Model 2015 (n = 1021)*

Future Tasks

- Refine integration threshold and investigate the positive intercepts in Series II Model 2015 multiwavelength thermal/optical carbon analyzer
- Conduct test of auto-loader

Autoloader Arm

Sample Cover w/ Loading Door

Sample Cassette

Peltier Cooling (internal)

Cooling Air (CO₂ exhaust from analyzer)

Ongoing Research: Testing New DRI Model 2015 Carbon Analyzer with an Autoloader

Recent IMPROVE_A Publications

- Arregocés, H.A., Rojano, R., Restrepo, G., (2022). Meteorological factors contributing to organic and elemental carbon concentrations in PM10 near an open-pit coal mine. Environmental Science and Pollution Research, 29, 28854-28865. 10.1007/s11356-022-18505-7.
- Chen, L.-W.A., Wang, X.L., Lopez, B., Wu, G.Y., Ho, S.S.H., Chow, J.C., Watson, J.G., Yao, Q., Yoon, S.J., Jung, H.J., (2023). Contributions of non-tailpipe emissions to near-road PM_{2.5} and PM₁₀: A chemical mass balance study. Environmental Pollution, 122283. 10.1016/j.envpol.2023.122283.
- da Costa, J.G., de Albuquerque, A.S., Ardisson, J.D., Fernandez-Outon, L.E., de Queiroz, R.S., Morimoto, T., (2023). Determination of settled dust sources by analytical techniques and chemical mass balance receptor model. Environmental Science and Pollution Research, 30, 17926-17941. 10.1007/s11356-022-23366-1.
- Debus, B., Weakley, A.T., Takahama, S., George, K.M., Amiri-Farahani, A., Schichtel, B., Copeland, S., Wexler, A.S., Dillner, A.M., (2022). Quantification of major particulate matter species from a single filter type using infrared spectroscopy application to a large-scale monitoring network. Atmospheric Measurement Techniques, 15, 2685-2702. 10.5194/amt-15-2685-2022.
- Hasegawa, S., (2022). Experimental characterization of PM2.5 organic carbon by using carbon-fraction profiles of organic materials. Asian Journal of Atmospheric Environment, 16, 10.5572/ajae.2021.128.
- Hassan, H., Schwab, J., Zhang, J., (2023). Harmonization of the long-term PM2.5 carbon data from the CSN sites in New York State. Aerosol and Air Quality Research, 23, 10.4209/aaqr.230077.
- Hopke, P.K., Chen, Y., Rich, D.Q., Watson, J.G., Chow, J.C., (2023). Issues with the organic and elemental carbon fractions in recent U.S. Chemical Speciation Network data. Aerosol and Air Quality Research, 23, 1-7. 10.4209/aaqr.230041 https://aaqr.org/articles/aaqr-23-02-sc-0041
- Li, Z., Zhi, G., Zhang, Y., Jin, W., Sun, J., Kong, Y., Shen, Y., Zhang, H., (2023). The integrating sphere system plus in-situ absorption monitoring: A new scheme to study absorption enhancement of black carbon in ambient aerosols. Science of the Total Environment, 892, 10.1016/j.scitotenv.2023.164355.
- Michael, R., Mirabelli, M.C., Vaidyanathan, A., (2023). Public health applications of historical smoke forecasts: An evaluation of archived BlueSky data for the coterminous United States, 2015–2018. Computers and Geosciences, 171, 10.1016/j.cageo.2022.105267. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142500569&doi=10.1016%2fj.cageo.2022.105267&partnerID=40&md5=cb3f8354a25a8c90bb2511fbc1695884
- Morris, R., Tonnesen, G., Brewer, P., Moore, T., Rodriguez, M., (2022). Assessment of progress toward regional haze rule visibility goals using United States anthropogenic emissions rate of progress. Journal of the Air and Waste Management Association, 72, 1259-1278. 10.1080/10962247.2022.2131653.
- Rüger, C.P., Neumann, A., Kösling, P., Vesga Martínez, S.J., Chacón-Patiño, M.L., Rodgers, R.P., Zimmermann, R., (2022). Addressing thermal behavior and molecular architecture of asphaltenes by a thermal-optical carbon analyzer coupled to high-resolution mass spectrometry. Energy and Fuels, 36, 10177-10190.
 10.1021/acs.energyfuels.2c02122.
- Shi, H., Chen, Z., Yang, Z., Wang, J., Yang, J., Huang, Y., (2023). Secondary formation and source analysis of carbonaceous components in PM1 in a typical city, Southwest of China. Atmospheric Environment, 299, 10.1016/j.atmosenv.2023.119671.

Recent IMPROVE_A Publications

- Verma, S.R., Pervez, S., Mandal, P., Chow, J.C., Watson, J.G., Andrabi, S.M., Verma, M., Dugga, P., Khan, N.A., Pervez, Y.F., Mishra, A., Deb, M.K., Karbhal, I., Tiwari, S., Ghosh, K.K., Shrivas, K., Satnami, M.L., (2022). Atmospheric abundance of PM_{2.5} carbonaceous matter and their potential sources at three high-altitude glacier sites over the Indian Himalayan range. Acs Earth and Space Chemistry, 6, 2919-2928. 10.1021/acsearthspacechem.2c00216.
 https://www.researchgate.net/publication/365400571_Atmospheric_Abundance_of_PM_25_Carbonaceous_Matter_and_Their_Potential_Sources_at_Three_High-Altitude Glacier Sites over the Indian Himalayan Range
- Wang, X.L., Chen, L.-W.A., Lu, M.G., Ho, K.F., Lee, S.C., Ho, S.H.H., Chow, J.C., Watson, J.G., (2022). Apportionment of vehicle fleet emissions by linear regression, positive matrix factorization, and emission modeling. Atmosphere, 13, 1066. 10.3390/atmos13071066. https://www.mdpi.com/2073-4433/13/7/1066
- Wang, Y., Mahowald, N., Hess, P., Sun, W., Chen, G., (2022). The relationship between PM2.5 and anticyclonic wave activity during summer over the United States. Atmospheric Chemistry and Physics, 22, 7575-7592. 10.5194/acp-22-7575-2022.
- Wang, X.L., Firouzkouhi, H., Chow, J.C., Watson, J.G., Carter, W., De Vos, A.S.M., (2023). Characterization of gas and particle emissions from open burning of household solid waste from South Africa. Atmos. Chem. Phys., 23, 8921-8937. 10.5194/acp-23-8921-2023. https://acp.copernicus.org/articles/23/8921/2023/
- Wang, X.L., Gillies, J.A., Kohl, S.D., Furtak-Cole, E., Tupper, K.A., Cardiel, D.A., (2023). Quantifying the source attribution of PM₁₀ measured downwind of the Oceano Dunes State Vehicular Recreation Area. Atmosphere, 14, 10.3390/atmos14040718.
- Wang, X.L., Gronstal, S., Lopez, B., Jung, H.J., Chen, L.-W.A., Wu, G.Y., Ho, S.S.H., Chow, J.C., Watson, J.G., Yao, Q., Yoon, S.J., (2023). Evidence of non-tailpipe emission contributions to PM_{2.5} and PM₁₀ near southern California highways. Environmental Pollution, 120691. 10.1016/j.envpol.2022.120691.
- Yuan, M., Wang, Q., Zhao, Z., Zhang, Y., Lin, Y., Wang, X., Chow, J.C., Watson, J.G., Tian, R., Liu, H., Tian, J., Cao, J.J., (2022). Seasonal variation of optical properties and source apportionment of black and brown carbon in Xi'an, China. Atmospheric Pollution Research, 13, 10.1016/j.apr.2022.101448.
- Zhou, Y., Chen, J., Fan, F., Feng, Y., Wang, S., Fu, Q., Feng, J., (2022). Deconvolving light absorption properties and influencing factors of carbonaceous aerosol in Shanghai. Science of the Total Environment, 839, 10.1016/j.scitotenv.2022.156280. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131432380&doi=10.1016%2fj.scitotenv.2022.156280&partnerID=40&md5=a05c9d3ae1009fe578daf081e4433bba
- Zou, C., Wang, J., Gao, Y., Huang, H., (2023). Distribution characteristics and optical properties of carbonaceous aerosol: brown carbon and black carbon in Nanchang, inland China. Atmospheric Pollution Research, 14, 10.1016/j.apr.2023.101700.