

September 9-12, 1997 Bartlett, New Hampshire

Cosponsored by:

American Geophysical Union

Volume I

Visual Air Quality, Aerosols, and Global Radiation Balance

Proceedings of a Specialty Conference Sponsored by the Air & Waste Management Association and the American Geophysical Union September 9-12, 1997 Bartlett, NH

American Geophysical Union

Visual Air Quality, Aerosols, and Global Radiation Balance VIP-76

Publication Policy

This publication contains technical papers published as they were presented at a recent specialty conference cosponsored by the Air & Waste Management Association (A&WMA) and the American Geophysical Union. The papers have not been subject to the editorial review procedure of A&WMA, and opinions expressed therein are not to be interpreted as having the endorsement or support of the Association.

Copies of this book are available to Air & Waste Management Association and American Geophysical Union members for \$80 (others \$95). To obtain a complete publications catalog, contact the A&WMA Member Services Department at 1-800-270-3444 (international: ++1-412-232-3444).

> Copyright 1997 Air & Waste Management Association One Gateway Center, Third Floor Pittsburgh, PA 15222 Phone: (412) 232-3444; Fax: (412) 232-3450

TABLE OF CONTENTS

TABLE OF CONTENTS CONFERENCE COMMITTEES ACKOWLEDGMENTS EXHIBITORS PREFACE	iii xiv xv xvii
Plenary Session	
Aerosol Characterization and Process Studies - Improving the Calculated Climate Forcing by Aerosol Particles <i>Timothy S. Bates and John L. Gras</i>	3
Review of Three-Dimensional Air Quality Models for Particulate Matter <i>Christian Seigneur</i>	5
Measuring and Simulating Particulate Organics in the Atmosphere: Problems and Prospects Barbara J. Turpin, Pradeep Saxena, and Petros Koutrakis	16
Session 1 - Field Programs Co-chairs: John G. Watson, Desert Research Institute; and John L. Gras, CSIRO	
Comparison of Aerosol Chemical and Optical Properties from Marine and Continental Regions Patricia K. Quinn, Derek J. Coffman, Volodia N. Kapustin, Timothy S. Bates, David S. Covert, John A. Ogren, Mark J. Rood, and Tad L. Anderson	23
The Relationship of Distant SO ₂ Emissions to Dallas-Fort Worth Winter Haze Charles E. McDade, Ivar Tombach, Christian Seigneur, Peter K. Mueller, and Pradeep Saxena	28
Interpretation of Trends of PM _{2.5} and Reconstructed Visibility from the IMPROVE Network James F. Sisler and Richard Damberg	35
Update of Spatial and Seasonal Trends of Sulfur and PM _{2.5} as Measured by the IMPROVE Aerosol Monitoring Network <i>James F. Sisler and William C. Malm</i>	45
An Analysis of the Yearly Changes in Sulfur Concentrations at Various National Parks in the United States for the Period 1980-1996 <i>Paul Patterson, Hari Iyer, James F. Sisler, and William C. Malm</i>	53

Trends Analysis of Fine Particulate Data in the Grand Canyon Region Shudeish Mahadev, Kadio Ahossane, and Ronald C. Henry	65
Size-Resolved Particle and Light Extinction Measurements During IMS95 Judith C. Chow, John G. Watson, Douglas H. Lowenthal, L. Willard Richards, Paul A. Solomon and Karen L. Magliano	80
Exploring Spatial Patterns of Particulate Sulfur from the Project MOHAVE Summer Intensive Using Analysis of Variance Techniques and Meteorological Parameters as Sort Parameters <i>Robert J. Farber, Craig Murray, and William A. Moran</i>	86
Conclusions from the Mt. Zirkel Visibility Study John G. Watson, Judith C. Chow, Catherine F. Cahill, Donald Blumenthal, L. Willard Richards, David Dietrich, Donald Cobb, Ralph Morris, Chris Emory, and Ronald J. Dickson	98
The Relationship Between Composition and Water Content of Atmospheric Particles: Results from a 1995 Experiment (SEAVS) in the Smoky Mountains <i>Pradeep Saxena, Stefan Musarra, and Peter H. McMurry</i>	105
An Overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) Phillip B. Russell, P.V. Hobbs, and L.L. Stowe	108
Session 2 - Regional Transport Co-chairs: Pradeep Saxena, EPRI; Ronald Henry, University of Southern California	
Aerosol Impacts on Class I Areas from Wild Fire and Ecosystem Restoration by Prescribed Fire: Modeling Results from the Grand Canyon Visibility Transport Commission Analyses <i>Tony VanCuren and Peter Lahm</i>	119
Long-Range Transport of Anthropogenic Aerosols to the NOAA Baseline Station at Mauna Loa Observatory, Hawaii Kevin D. Perry, Thomas A. Cahill, Russell C. Schnell, and Joyce M. Harris	130
Seasonal Transport of Fine Particles to the Grand Canyon Luis A. de P. Vasconcelos	140
Identification of Air Corridors Impacting the Waterton-Glacier International Park Karen McDonald, Dave Fox, Raymond M. Hoff, and Len F. Guise-Bagley	156
Use of Project MOHAVE Perfluorocarbon Tracer Data for Source Attribution Analysis Mark C. Green and Ivar Tombach	166

Characterization of Regional Transport and Dispersion Using Project MOHAVE Tracer Data Marc Pitchford, Mark C. Green, Hampden Kuhns, and Robert J. Farber	
Marc Fuchjora, Mark C. Green, Humpuen Kunns, and Kobert J. Farber	
Alternatives to the Nested Grid Model Estimates as Input to Regional Visibility Models: Lessons from the GCVTC Assessment Prasad Pai, Robert J. Farber, Prakash Karamchandani, and Ivar Tombach	201
Evaluation of Wind Fields Used in Grand Canyon Visibility Transport Commission Analyses Mark C. Green, Prasad Pai, Lowell L. Ashbaugh, and Robert J. Farber	213
A Preliminary Look at Source-Receptor Relationships in the Texas-Mexico Border Area Kristi A. Gebhart, William C. Malm, and Miguel Flores	224
Session 3 - Aerosol Measurement Techniques Co-chairs: Delbert Eatough, Brigham Young University; and Susanne Hering, Aerosol Dynamics Inc.	
Multiangle Remote Sensing of Aerosols Over Ocean Ralph Kahn, David J. Diner, John V. Martonchik and Robert A. West	235
Analysis of the Real World Performance of the Optec NGN-2 Ambient Nephelometer John V. Molenar	243
Aerosol Light Scattering Measurements as a Function of Relative Humidity Derek E. Day, William C. Malm, and Sonia M. Kreidenweis	266
Measurement of the Aerosol Absorption Coefficient for the IMPROVE Network Dave Campbell, Brian P. Perley, and Robert A. Eldred	281
Observations of Submicron Salt Particles at Cape Grim During ACE-1 D.M. Murphy, A.M. Middlebrook, and D.S. Thomson	292
Use of Direct Fourier Transform Infrared (FTIR) Spectroscopy Coupled with Solvent Rinses for Assessment of Organic Aerosol Barbara J. Turpin, Robert J. Porcja, James D. Blando, and Annmarie G. Carlton	298
A BOSS for Routine Sampling for Semi-Volatile Fine Particulate Material Yanbo Pang, Yiming Ding, Kevin Warner, Delbert J. Eatough, Norman L. Eatough, and Roger L. Tanner	302
Analyses of Phoenix and Tucson, Arizona Fine Particulate Matter Mass Concentration Data: Field Comparisons of Sampling Methods <i>Charles Thomas (Tom) Moore, Jr., and Michael George</i>	310

Real Time, <i>In-Situ</i> Measurement of Aerosol Light Absorption with a New Photoacoustic Instrument W. Patrick Arnott, Hans Moosmüller, and C. Fred Rogers	329
Session 4 - Atmospheric & Aerosol Optics Co-chairs: Warren H. White, Washington University; and Yoram Kaufman, NASA/Goddard Space Flight Center	
Scattering and Radiative Properties of Internal Versus External Mixtures of Different Aerosol Types <i>Michael I. Mishchenko and Larry D. Travis</i>	339
Effects of Mixing on Extinction by Carbonaceous Particles Kirk A. Fuller, William C. Malm, and Sonia M. Kreidenweis	344
Mie Scattering and Sulfate Speciation James F. Sisler, Rodger B. Ames, and William C. Malm	355
Visual Range Impairment in Boston, MA, and its Association with Local and Regional PM _{2.5} and Black Carbon Soot <i>George Allen, J. Annie Oh, Petros Koutrakis, and L. Willard Richards</i>	361
Comparison of Measured Scattering as a Function of Relative Humidity to Aerosol Scattering Models William C. Malm, Derek E. Day, and Sonia M. Kreidenweis	368
Mie Theory Evaluation of Species Contributions to Visibility Reduction in the Smoky Mountains: Results from the 1995 SEAVS Study Peter H. McMurry, William D. Dick, Pradeep Saxena, and Stefan Musarra	394
Optical Properties of the Urban Aerosol in Dallas-Fort Worth Charles E. McDade, Ivar Tombach, Susanne Hering, and Nathan Kreisberg	400
Comparison of Measured and Modeled High Resolution Sky Spectral Radiance Data John V. Molenar, Ronald C. Henry, and Shudeish Mahadev	407
Session 5 - Numerical Modeling of Aerosols and Visibility Co-chairs: Prasad Pai, AER; and Mark Z. Jacobson, Stanford University	
Receptor Modeling for Air Quality Management Philip K. Hopke	421
Simulation of Stack Plume Opacity with a Visibility Model Richard Z. Meng, Prakash Karamchandani, and Christian Seigneur	429

Evaluation of the CALMET/CALPUFF Modeling System Using Project MOHAVE Tracer and Implications for Sulfate Concentrations John C. Vimont	
The Influence of Monoterpene Chemistry on Modeled Aerosol and Ozone Concentrations - Implications for Visibility Impairment in the Fraser Valley <i>Rebecca J. Barthelmie and Sara C. Pryor</i>	447
The Interaction of Particles and Gases with Solar Radiation in Mexico City <i>G.B. Raga, A.C. Raga, and L.G. Ruíz-Suárez</i>	459
Multiangle Optical Measurements of Refractive Index of Summertime Aerosols in the Smoky Mountains William D. Dick, Paul J. Ziemann, and Peter H. McMurry	469
Session 6 - Atmospheric Aerosols - Theory & Experiments Co-chairs: Azadeh Tabazadeh, NASA/Ames Research Center; and Sonia M. Kreidenweis, Colorado State University	
Nucleation of Sulfuric Acid and Water: Experiments, Theory, and <i>ab initio</i> Calculations <i>A. Laaksonen, M. Kulmala, Y. Viisanen, H. Arstila, and K. Laasonen</i>	479
The Size-Resolved Chemical Composition of Natural and Anthropogenic Aerosols at Mace Head, Ireland <i>Catherine F. Cahill, Dabrina D. Dutcher, Paul H. Wakabayashi, Michael Geever,</i> <i>and S. Gerard Jennings</i>	487
Apportionment of Light Scattering and Hygroscopic Growth to Aerosol Composition <i>Lynn M. McInnes, Mike H. Bergin, and John A. Ogren</i>	498
Bimodality of Aerosol Size Distribution in the 0.06 - 1.0 µm Diameter Range Observed During Haze Episodes Ülle Kikas, Aadu Mirme, Eduard Tamm, and Taisto Raunemaa	507
Vertical and Horizontal Heterogeneity of Aerosol Loadings: Observations and Modeling Sara C. Pryor, Raymond M. Hoff, Rebecca J. Barthelmie, and Ian G. McKendry	516
Concentration and Composition of Atmospheric Aerosols in Southeastern United States: Results from a 1995 Experiment (SEAVS) in the Smoky Mountains Pradeep Saxena, Stefan Musarra, Derek E. Day, Lynn Hildemann, Petros Koutrakis, William C. Malm, Peter McMurry, and Ilhan Olmez	529
Characterization of Daytime Fine Organic Aerosols from the Southeastern Aerosol Visibility Study (SEAVS) Lynn M. Hildemann, Michelle Shulman, Liya E. Yu, Jesse Roach, and Royal Kopperud	531

Estimates of Particle Hygroscopicity During the Southeastern Aerosol and Visibility Study (SEAVS) Jenny L. Hand, Rodger B. Ames, Sonia M. Kreidenweis, Derek E. Day, and William C. Malm	534
Ammoniated Aerosols in the Upper Troposphere: Implication for Cirrus Cloud Formation <i>Azadeh Tabazadeh and Owen B. Toon</i>	545
Session 7 - Environmental Management & the Human Interface Co-chairs: George Hidy, University of Alabama; and Richard Damberg, U.S. EPA	
Examining Impacts of Visibility, PM and Ozone Strategies Before Implementation <i>Paulette Middleton and Nels S. Laulainen</i>	559
Trends in Visibility, PM _{2.5} , and Deposition Expected from the Acid Rain Provisions of the 1990 Clean Air Act Amendments Jack D. Shannon and Donald A. Hanson	564
Development of an Observation Based Model for Assessment of the Effect of Pollutant Control Strategies on Visibility in the Denver Region Martin Buhr and Patrick Cummins	570
Assessment of Benefits of Aerosol Reductions in Southern Appalachia Patricia F. Brewer, Scott Copeland, and Cindy Huber	582
Perceptions and Valuation of Visibility: A Case Study in New Hampshire's White Mountain National Forest Wendy Harper, L. Bruce Hill, and Joan Carlson	589
Session 8 - Field Studies Co-chairs: Charles McDade, ENSR; and Peter Pilewskie, NASA/Ames Research Center	
Trends in the Extremes of Aerosol Concentration Distributions Hari Iyer, Paul Patterson, William C. Malm, and Jaime Delgado	603
Fine Particulate Matter in the Cascade, Sierra Nevada, and San Bernardino Mountains Thomas A. Cahill, Robert A. Eldred, Lowell L. Ashbaugh, and Kenneth Bowers	610
Visibility Impairment in the San Bernardino Mountains: A Detailed Look at IMPROVE Data 1988-1996 <i>Scott Copeland</i>	624

Fine Particulate Chemical Composition and Light Extinction at Meadview, Arizona During the Project MOHAVE 1992 Summer Intensive Study Delbert J. Eatough, Wenxuan Cui, and Jeffery Hull	
Emissions Characterization During Project MOHAVE John G. Watson, Norman F. Robinson, Robert J. Farber, and Vincent A. Mirabella	642
Particles and Haze in Jakarta, Indonesia John L. Gras and David D. Cohen	646
Optical Properties of Aerosols Over the Remote Southern Hemisphere Ocean <i>Darrel Baumgardner</i>	658
Wet Deposition Flux of Trace Elements to the Adirondack Region Xudong Huang, Gulen Gullu, Jianmei Che, Sinan Keskin, Francis Pink and Ilhan Olmez	670
Session 9 - Source Receptor Relationships Co-chairs: William C. Malm, National Park Service; and Fred Lurmann, Sonoma Technology Inc.	
Estimating the Contribution of the Mohave Coal-Fired Power Plant Emissions to Atmospheric Extinction at Grand Canyon National Park <i>Rodger B. Ames and William C. Malm</i>	683
Receptor Modeling for Elemental Source Contributions to Fine Aerosols in New York State Michael Ames, Gulen Gullu, Jack Beal, and Ilhan Olmez	710
Modeling of Potential Power Plant Plume Impacts on Dallas-Fort Worth Visibility Christian Seigneur, Prasad Pai, Ivar Tombach, Charles E. McDade, Pradeep Saxena, and Peter K. Mueller	722
Relating Summer Ambient Particulate Sulfur and Sulfur Dioxide to Gaseous Tracer Emissions at the Mohave Power Project Vincent A. Mirabella	733
Sources of PM _{2.5} : Can a Hybrid Source-Receptor Model be Used to Determine the Source of PM _{2.5} ? <i>William A. Moran and Ronald C. Henry</i>	754
Phantom Sources from Spatial Correlations: An Example <i>Warren H. White</i>	762
Trends in SO ₄ ⁻² Concentrations from 1975 to 1996 at Whiteface Mountain, New York <i>Liaquat Husain, V.A. Dutkiewicz, and M. Das</i>	768

Derivation of $SO_2 - SO_4^{-2}$ Transformation and Deposition Rate Coefficients776Over the Eastern U.S. Using a Semi-Empirical Approach876Bret A. Schichtel and Rudolf Husar776

Session 10 - Aerosol Effects on Radiative Budgets Co-chairs: Robert Bergstrom, Bay Area Environmental Research Institute; and Joseph J. Michalsky, State University of New York at Albany	
Optimal Shortwave Irradiance Measurements for Surface Radiation Balance Studies	791
Joseph J. Michalsky and Ellsworth G. Dutton	
A Comparison of Modeled and Measured Irradiances for a Molecular Atmosphere Seiji Kato, Thomas P. Ackerman, Ellsworth G. Dutton, Nels S. Laulainen, and Nels Larson	800
Aerosol Direct Solar Radiative Forcing Simulations, Measurements and Uncertainties	808
Stefan Kinne, Robert Bergstrom, Phillip B. Russell, and P. Hignett	
Radiative Closure Experiments at a Cloud-Free Desert Site, Nevada, as Part of MISR Algorithm Validation J.E. Conel, W.A. Abdou, C.J. Bruegge, B.J. Gaitley, M.C. Helmlinger, W.C Ledeboer, S.H. Pilorz, and John V. Martonchik	819
Solar Radiative Transfer Under Cloud-Free Conditions Robert Bergstrom, Eli Mlawer, Tony Clough, Irina Sokolik, Brian Toon, Peter Pilewskie, and Stefan Kinne	830
Modeling the Global Direct Radiative Forcing of Sulfate and Black Carbon Aerosols Jim Haywood and V. Ramaswamy	835
Sensitivity and Variability of Marginal Direct Climate Forcing by Atmospheric Aerosols J. Jason West, Spyros N. Pandis, Christodoulos Pilinis, and Athanasios Nenes	841
Studying the Effects of Aerosols on Actinic Flux and Photolysis Rate Coefficient Profiles Over an Urban Airshed Mark Z. Jacobson	849
Direct Aerosol Radiative Forcing: Calculations and Measurements from the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) <i>Phillip B. Russell, P. Hignett, L.L. Stowe, J.M Livingston, Stefan Kinne, and J. Wong</i>	856
Evaluation of a Global Aerosol Model Using Aerosol Optical Data Derived from Solar and Stellar Radiometers <i>Nels S. Laulainen, Richard C. Easter, and Steven J. Ghan</i>	868

Poster Sessions' Co-chairs: Marc Pitchford, NOAA; and Patricia K. Quinn, NOAA

Poster Session - Radiative Transfer & Visibility Effects

Sensitivity of Tropospheric Ozone Production to Changes in Atmospheric Radiation <i>Kevin Crist and John Kuruvilla</i> (Paper was not presented at the conference.)	877
Aerosol Model Assumptions and Differences Between Measured and Calculated Solar Broadband Fluxes Stefan Kinne, Robert Bergstrom, and Owen B. Toon	882
Visual Air Quality Image Processing System and Simulation Techniques Yahya Golestani, John V. Molenar, and William C. Malm	896
A Study of the Diffuse to Direct Solar Irradiance Ratio and Aerosol Optical Depth in the Southeastern U.S. Shaocai Yu, V.K. Saxena, B.N. Wenny, J.J. DeLuisi, G.K. Yue, and I.V. Petropavlovskikh (Paper was not presented at the conference.)	905
Application of Color Appearance Models in Visual Air Quality Research Shudeish Mahadev, Ronald C. Henry, and Derek E. Chitwood	917
Post Processor to Calculate Contrasts from Calculated Light-Extinction Data <i>L. Willard Richards</i>	924
Poster Session - Aerosol & Optical Measurement Techniques	
Poster Session - Aerosol & Optical Measurement Techniques Aerosol Mass Spectrometer for Size and Composition Analysis of Sub-Micron Particles J.T. Jayne, D.R. Worsnop, C.E. Kolb, and P. Davidovits	939
Aerosol Mass Spectrometer for Size and Composition Analysis of Sub-Micron Particles	939 946
 Aerosol Mass Spectrometer for Size and Composition Analysis of Sub-Micron Particles J.T. Jayne, D.R. Worsnop, C.E. Kolb, and P. Davidovits ASOS Visibility Sensor Data as an Indicator of PM and Haze L. Willard Richards, Timothy S. Dye, Siana Hurwitt, George Allen, 	
 Aerosol Mass Spectrometer for Size and Composition Analysis of Sub-Micron Particles J.T. Jayne, D.R. Worsnop, C.E. Kolb, and P. Davidovits ASOS Visibility Sensor Data as an Indicator of PM and Haze L. Willard Richards, Timothy S. Dye, Siana Hurwitt, George Allen, and J. Annie Oh Aerosol Light Scattering Measurements: A Comparison of Differently Configured Optec Nephelometers 	946
 Aerosol Mass Spectrometer for Size and Composition Analysis of Sub-Micron Particles J.T. Jayne, D.R. Worsnop, C.E. Kolb, and P. Davidovits ASOS Visibility Sensor Data as an Indicator of PM and Haze L. Willard Richards, Timothy S. Dye, Siana Hurwitt, George Allen, and J. Annie Oh Aerosol Light Scattering Measurements: A Comparison of Differently Configured Optec Nephelometers Derek E. Day, William C. Malm, Sonia M. Kreidenweis, and Roger M. Tree Sampling Duration Calculations 	946 952

Water and Volatile Particulate Matter Contributions to Fine Aerosol Gravimetric Mass	991
Dabrina D. Dutcher, Kevin D. Perry, and Thomas A. Cahill	
Poster Session - Aerosol Optical, Physical, & Chemical Properties	
The Physical Interpretation of Regressions Relating Light Scattering to Aerosol Composition Luis A. de P. Vasconcelos, Edward S. Macias, Peter H. McMurry, Barbara J. Turpin, and Warren H. White	1003
Peat Smoke: A Significant Contributor to Aerosol Optical Absorption in Ireland <i>Catherine F. Cahill, Marco A. Seifert, Derek Farrell, and S. Gerard Jennings</i>	1012
Ambient vs. Dried Aerosol Light Scattering Measurements at Egbert, Ontario,	1021
Canada Len F. Guise-Bagley and Raymond M. Hoff	
Optical Measurements of Aerosol Size Distributions in Great Smoky Mountains National Park: Dry Aerosol Characterization Rodger B. Ames, Jenny L. Hand, Sonia M. Kreidenweis, Derek E. Day, and William C. Malm	1027
Size/Compositional Profiles of Aerosols at Great Smoky Mountains National Park During SEAVS Thomas A. Cahill, Kevin D. Perry, Dabrina D. Dutcher, Robert A. Eldred, and Derek E. Day	1049
Organic Aerosols at Great Smoky Mountains National Park During SEAVS Thomas A. Cahill, Dabrina D. Dutcher, Kevin D. Perry, Robert A. Eldred, Carlos P. Castaneda, and Richard M. Higashi	1057
Regional Patterns of Fine Carbonaceous Particle Concentrations at Remote Sites Throughout the United States <i>Robert A. Eldred</i>	1066
The Crustal Contribution to Fine Aerosol Mass as Determined by Elemental Composition <i>Jec-Kong Gone, Jianmei Che, Michael Ames, Ilhan Olmez, and Lynn M. Hildemann</i>	1078
The Relationship Between Scattering, Visual Quality and Aerosol Concentrations at CASTNet Visibility Sites Thomas F. Lavery, Joey Landreneau, Selma Isil, and Ralph Baumgardner	1086
Poster Session - Aerosol Processes	
Tropospheric Sulfate Aerosol Formation Via Ion-ion Recombination Richard P. Turco, Jing-Xia Zhao, and Fangaun Yu	1097

Richard P. Turco, Jing-Xia Zhao, and Fangqun Yu

The Development of an Approach for the Study of Atmospheric Aerosol Nucleation Using a Combined Laminar Flow Tube Reactor and Atmospheric Pressure Ionization Mass-Spectrometer Technique Vladimir B. Mikheev, Viktor V. Pervukhin, and Nels S. Laulainen	1115
Influence of Organic Acids on Surface Properties of Activating Droplets Zhidong Li, Allen L. Williams, and Mark J. Rood	1122
Poster Session - Air Quality & Source-Receptor Relationships	
Seasonal and Long-Term Variability of Atmospheric Aerosol Sources in the Western Arctic <i>Alexandr V. Polissar, Philip K. Hopke, and Yu-Long Xie</i>	1137
Providing Real Time Air Quality Data to Decision Makers and the Public David S. Cismoski and Roger M. Tree	
Second Generation Chemical Mass Balance Source Apportionment of Sulfur Oxides and Sulfate at the Grand Canyon During the Project MOHAVE 1992 Summer Intensive Delbert J. Eatough, Robert J. Farber, and John G. Watson	1153
Air Masses and the Origin of Aerosols Reaching the Southern West Coast of Portugal During Summer Lourdes Bugalho and Ana Alaria Silva	1161
Retrieval of North American Sulfur, Nitrogen, and Ammonia Emission Fields from Air Quality Data Bret A. Schichtel and Rudolf Husar	1167
Modeling and Prediction of Ambient Ozone Concentrations Based on Neural Network Approach Lubomir Hadjiiski and Philip K. Hopke	1174

SUBJECT INDEX

AUTHOR INDEX

CONFERENCE COMMITTEES

Technical Program Chair Ivar Tombach, ENSR Corp.

Technical Program Co-chairs L. Willard Richards, Sonoma Technology Inc. Philip B. Russell, NASA/Ames Research Laboratory Pradeep Saxena, Electric Power Research Institute

> **Exhibition Chair** John Makar, Ross Air Systems

Technical Council, A&WMA C.V. Mathai, Chair

A. Gwen Eklund, Vice Chair

Visibility Committee (AB-6), Technical Council Charles E. McDade, Chair Prem Sagar Bhardwaja, Vice Chair Robert J. Farber, Secretary

Particulate Committee (AB-1), Technical Council Steven Heisler, Chair Delbert J. Eatough, Vice Chair and Secretary

Receptor/Source Apportionment (AM-2) Committee, Technical Council Judith C. Chow, Chair

New England Section, Sections & Chapters Council

Carol L. Lear, Chair Robert Silvestri, Vice Chair William T. Panos, Secretary Edmond G. Benoit, Treasurer

ACKNOWLEDGMENTS

The Air & Waste Management Association and the American Geophysical Union would like to thank the following organizations for their financial support:

American Automobile Manufacturers Association

EXHIBITORS

Air Resources Specialists, Inc. Kipp & Zonen MIE, Inc. Rupprecht & Pataschnick Co., Inc. Yankee Environmental Systems

PREFACE

Atmospheric aerosols affect the propagation of light and other radiation through the atmosphere and thus influence both the visibility of scenic vistas and the climate-related radiation balance of the earth. Because of this linkage, the Air and Waste Management Association and the American Geophysical Union jointly sponsored the Specialty Conference on Visual Air Quality, Aerosols, and Global Radiation Balance at Bartlett, New Hampshire, on 9-12 September 1997. This conference was the second such cooperatively-sponsored meeting and the fifth visibility-related specialty conference of the A&WMA.

This volume of conference proceedings is a record of the presentations made at the conference. It includes, at the discretion of the author, either a complete technical paper or a synopsis of each work. The material presented here has not been peer reviewed. Special sections of the Journal of the Air and Waste Management Association and the Journal of Geophysical Research, expected to be published in about one year, will contain peer reviewed versions of many of the papers presented at this conference.

126 papers were presented at the conference. They addressed advances in the scientific understanding of the transfer of visible and infra-red radiation through the atmosphere and of the origins, physics, and chemistry of the aerosols that scatter and absorb that radiation. Many field experiments that addressed visibility in urban and scenic areas and the climate-related radiation balance of areas of the earth were described. Societal issues related to the conference themes were also addressed.

The conference was preceded by two half-day short courses that addressed topics related to the main themes of the meeting. A course on Applied Aerosol Light Extinction Modeling was presented by Douglas H. Lowenthal of the Desert Research Institute. Aerosol Effects on Global Climate Change and Visibility was the subject a second course, presented by V. Ramaswamy of the NOAA Geophysical Fluid Dynamics Laboratory and L. Willard Richards of Sonoma Technology, Inc.

The conference proper began with four extended lectures on the state of the art. Timothy S. Bates of the NOAA Pacific Marine Environmental Laboratory discussed several aerosol characterization and process studies that are focused on improving the calculation of climate forcing by aerosol particles, an important process that is currently poorly quantified. Christian Seigneur of Atmospheric and Environmental Research, Inc., reviewed and compared the capabilities of three-dimensional air quality models that have the capability of simulating the formation of fine particles in the atmosphere and discussed where improvements are needed. Kimberly Prather of the University of California at Riverside described the work that she and others have been doing on real-time chemical analysis of single atmospheric particles, a new approach that may liberate some aerosol researchers from collecting samples on filters and analyzing them in the laboratory. And Barbara J. Turpin of Rutgers University provided an overview of findings and challenges in the measurement and simulation of atmospheric organic particles, a topic that arose often throughout the conference.

As befits a conference that addressed topics of global concern, the participation in the conference included many individuals from outside the United States. Several papers were presented by authors from Canada, and that country was also well represented by conference attendees. Other presenters came from institutions in Australia, Estonia, Finland, Mexico, and Portugal, and an even wider international spectrum was represented in the authorship of papers and in the attendance at the meeting.

It was particularly gratifying to observe the growth in the interchange of information between the climatic aerosol and scenic visibility aerosol communities since the first joint specialty conference at Snowbird, Utah, in 1994. The current conference revealed that both communities have benefitted increasingly from techniques and knowledge that were developed and applied by researchers in the other community.

As Conference Technical Program Chairman, I had the privilege to work with a dedicated team of individuals in the 15-month long process of organizing this conference. It was a learning experience to see how much effort by so many people was needed to execute a successful meeting. Most of the work over those 15 months was done by a team of dedicated co-chairs - L. Willard Richards of Sonoma Technology, Inc., Philip B. Russell of the NASA Ames Research Center and Pradeep Saxena of the Electric Power Research Institute - plus Charles E. McDade of ENSR Corp. (the chairman of the A&WMA's Visibility Technical Committee, the principal sponsoring committee of the conference) and Adrianne Carolla of the A&WMA staff. John Makar of Ross Air Systems organized the successful exhibition and represented the New England Section of the A&WMA. L. Willard Richards also organized the short courses that were presented the day before the conference and arranged the nature-oriented outings that took place on the second afternoon of the conference.

Substantial administrative support was provided by Elaine Houston of ENSR Corp. as well as by Louise Wallach and Jane Wagner of A&WMA. The abstract book was composed by Amy Butler and this proceedings volume was composed by Keri Conley, both at the A&WMA. A small army of dedicated session co-chairs, whose names are given on the session title pages in this volume, rounded out the organizing team for the meeting. I am thankful for the efforts of every one of these individuals, as well as for the contributions of the authors of the many presentations and of those who worked behind the scenes.

Ivar Tombach Technical Program Chairman [NOTE: Pages 1 through 1181 are not included in this file. Please contact the author(s) directly for copies of their manuscripts]

Subject Index

Α		
Ab init	<i>io</i> calculations	479
	te cavity radiometer	791
	te Factor Score (AFS)	1078
	Multiple Linear Regression	
	(AFS-MLR)	1078
Absorp		344
Acid ra		564
1101010	Provisions (Title IV)	564
Activat	ting droplets	1122
	Scattering Aerosol Spectr	
	(ASASP-X) particle counter	
Adinic	acid (C_6)	1122
Advan	ced statistical Trajectory R	
1 Iu vuii	Air Pollution (ASTRAP)	
Aeroso	-	243
1101050	Absorption coefficient	243
	Anthropogenic	130
	Characterization Experim	
	ACE	3
	ACE-I	292, 830
	ACE-II	830
	Chemistry	5
	Dynamics	5
	Impacts	119
	Loading 368, 516, 564	
	Mass spectrometry	+, 890, 1049 939
	Particles	459
		368, 498
	Scattering Size distribution	235, 266
	Urban	400
Aerosc	-	3, 235, 281
Actosu	Characterization	-
	Distributions	3
		531
	Organic Secondary organic	447
Aethal		1012, 1161
		339, 570
Aggreg		529
	Particle properties	963
۸.i.,	Samples	905
Air	Comidona	156
	Corridors	156
	Mass	1012
	Quality	603
	Measurements	98
	Monitoring	963 769
	Trajectories	768

Airborne	
Particles	65
Platform 9	975
Aircraft 108, 7	722
	975
Ambient scattering 243, 10)21
	330
Ammonia (NH ₃) 355, 429, 545, 1115, 11	l 67
Ammonium 105, 394, 429, 8	
	570
	122
Nitrate 98, 3	302
Sulfate 355, 5	
Anthropogenic 487, 710, 8	335
Aerosols 10)12
Origin 983, 11	137
	589
Appalachian Mountain Club (AMC) 5	589
Aqueous-phase chemistry	5
Arctic haze 11	137
	330
Arsenic 1	130
Asymmetry factor	3
Atmospheric	
	344
1	533
Particles 65, 2	235
Automated Surface Observing	
System (ASOS) 361, 9	
Azimuthal angle 4	169
D	
B	1 ~ 1
Back trajectories 140, 156, 11	
Backscatter measurements 516, 6	58
Backwards Monte Carlo radiation	107
	107
Big Bend National Park 224, 11	44
Biogenic 447, 11	167
Contribution 447, 11	
- 8	529
Origin 986,10 Plack carbon 261 825 1012 11	
Black carbon 361, 835, 1012, 11	
Boundary layer 459, 8 Marina 202, 658, 10	
Marine 292, 658, 10	308
5	65
Box and whiskers plot	05

Brigham Young University	
Organic Sampling System	
BIGBOSS	302
BOSS	302
PC-BOSS	302
Broadband direct irradiances	882
Brown cloud	361
Buoyancy	429

С	
California Air Resources	Board 610
CALMET	98, 436
CALPOST	436
CALPUFF	98, 436, 924
Carbon	98, 1066
Atmospheric	344
Black	361, 1012, 1137
	, 394, 469, 529, 570,
	2, 1057, 1066, 1086
Isotopes	531
Organic	394, 447, 469, 531,
Organic	570, 1066, 1086
Carbon diavida (CO)	<i>370</i> , 1000, 1080 830
Carbon dioxide (CO ₂) Carbonaceous material	302, 339, 344,
Carbonaceous material	
CAPT scheme	633, 1057, 1066 1021
CART scheme	
Cascade range	610
Characterization	633, 642, 975
Chemical Mass balance (C)	$\mathbf{MD} \qquad 09 622$
Mass balance (Cl	
Modeling	646, 1153
Modeling	166
Properties Transment model	3, 23, 487, 856
Transport models	
Variability	642
Chloride	429
Chlorine Characterentia analysis	487
Chromatographic analys	
CIE color matching syste	
CIT model	5,924
Clean Air Act (CAA)	1078
Clean Air Act Amendme	
	35, 559, 564, 589
Clean Air Status and Tre	
Network (CAST)	
CLEARCOLUMN-ACE	
Climate	841, 939
Forcing	3
Models	16, 830
R30	835
Climate Monitoring and	
Diagnostic Labor	
Cloud nucleating proper	ties 3

Clouds	507, 835
Cirrus	545
Coal smoke	1012
Coal-fired generating stations	
98, 642, 722, 733, 9	924, 1153
Coastal Oxidant Assessment for So	utheast
Texas (COAST) program	1174
Color appearance models	917
Computer simulation model	429
Concentration fields	762
Condensation nuclei	1137
Conditional frequency analysis (CF	
Continental sources	487
Continuous emissions monitoring	642
Contrasts	924
Controlled bums	610
Copper	130
Criteria pollutants	1144
Crustal	
Contribution	1078
Elements	1086
D	
D Daily air quality forecasts	1021
Daily air quality forecasts Dallas Winter Haze Study	243
Dallas-Fort Worth urban area	722
Dallas-Fort Worth Winter Haze	122
Project (DFWWHP)	400
DAQM model	5, 924
Davis Rotating dnun Unit for	J, J_{24}
	487, 1049
DAWN-A detector	469
Daytime	-UJ
Conditions	856
Samples	531
Denali National Park	610
Density	1027
Denuder sampler	302
Denver region	570
Denver Visibility Study	589
Deposition 564 670	

Denver visibility Study		389
Deposition	564, 670, 683	, 722
Dry		776
Wet	564, 670	, 776
Diagnostic meteorologica	ıl model	201
Differential mass balance	;	
(DMB) model		683
Differential Mobility Opt		
Size Spectrometry	(DMOPSS)	105
Diffuse field irradiance		800
Diffuse to direct ratio		905
Diffusion denuder sample	ers	633
Digital cameras		1144

Direct	
Aerosol forcing of climate	339
Beam irradiance	800
Optical methods	281
Radiative forcing	835, 856
Dispersion	166, 722
Diurnal pattern	624
DMS emissions	1097
Dried scattering	1021
Dry	
Accumulation mode	1027
Deposition	776
Mass	529
Scattering	498, 582
Dust 98, 130, 339,	394, 529,
582, 819, 1	1049,1167
Dynamic graphics displays	1144
Dynamic models	1174

E

Earth Observing System (EOS)	235
Ecosystem model	16
Electric Aerosol Spectrometer (EAS)	507
Electric Power Research Institute	368
Electric utilities 917, 1	
Electrostatic precipitators (ESP)	429
Elemental	427
Carbon 329, 394, 469, 529,	570
646, 1012, 1057, 1066, 1	
	.049
The second se	144
Emissions	144
	167
Inventories 98, 642, 1	
Reduction strategies	559
Energy	550
Strategy	559
Utilization	559
	.021
Environmental Protection Agency (U.S. E	PA)
5, 35, 86, 213, 310, 429, 559,	
589, 917, 924, 1086, 1	
	122
External mixtures	339
Extinction 344, 355, 368, 407, 624,	
Extreme values	603
F	
Factor analysis	710
Federal Land Managing practices	603
Federal Reference Method (FRM)	310
Filter	
Pack sampler	302
Samples	963
· r ···	

Fine mass 65, 447, 624, 646, 99	
Loadings	1086
Fine particles 140, 302, 421, 531, 6	
Models	16
Monitoring	224
Fire Emissions Project (FEP)	119
Fires	98 610
Forest	610
	603, 610
Wild 119, 603, 6	
Flue gas desulfurization	429
6	22,946
Forest fires	610
Forward trajectories analysis	161
Fossil fuels	768
Fourier Transform Infrared (FTIR)	529
Direct	298
	47, 516
Fugitive contributions	1167
Functional group composition	298
G	
Gas chromatography/mass spectroscopy (GC/MS) 2	.98, 529
	,90, 529
Gas-phase	1115
Analysis	1115
Chemistry CATOR model	5 5
GATOR model	5 856
General circulation model (GCM)	830
Geophysical Fluid Dynamics	835
Laboratory (GFDL)	833
Global	107
Atmospheric Watch site	487 868
Chemistry model	
Climate model	3,868
Radiative balance	830
Tropospheric model	868
Warming Crond Conven	830 140
Grand Canyon	
National Park 86, 166, 18	
213, 633, 683, 733, 114 Visibility Transport Commiss	
Visibility Transport Commiss	
Gravimetric mass	201,213 991
Great Smoky Mountains National Par	
266, 529, 534, 58 952, 1027, 1049, 107	
952, 1027, 1049, 107 Ground albada	8, 1144 905
Ground albedo Guadaluna Mountaine National Park	905 224
Guadalupe Mountains National Park	224
Н	
n Halogens	292
	1078
Hazardous Air Pollutants (HAPS)	10/0

Haze 28, 86, 108, 507, 564, 5	89, 603,
722, 733, 917, 946, 1057, 108	86, 1137
Arctic	1137
Blue	507
Episodes	507
Grey	507
Regional	35, 361
Sulfate	33, 301
White	722
Heterogeneity	516
Human	
Exposure model	16
Health 531, 877, 9	939, 975
Humic substances	983
Hunt model	917
Hybrid integrating plate	
and sphere system (HIPS)	281
Hydrocarbon compounds	1174
	429
Hydrogen chloride (HCl)	-
Hygroscopicity 531, 534, 102	
Growth 49	98, 1021
Ι	
Ice	975
Crystals	545
Imaginary	
Part	905
Refractive index	819
	407
Imaging	407
IMPROVE Network (see below)	
In situ	000
Data	808
	329, 658
Infrared radiation	1057
Inorganic and Secondary Organic PA	RTicle
(ISOPART) model 4	47, 516
inorganic electrolytes	105
Instrumental Neutron Activation	
	0, 1078
Instrumentation	329
Integrated Monitoring Study (IMS95)	
integrated Womtoring Study (19395)	281
integrating plate method	
HIPS	281
LIPM	281
Integrating sphere method	281
Interagency Monitoring of PROtected	1
Visual Environments (IMPRO	OVE)
Network 35, 45, 53, 224, 24	43, 281,
355, 487, 534, 582, 603, 6	10 101
633, 991, 1057, 1066, 108	10, 624.
$(J_{j_1}, J_{j_1}, I_{j_1}, $	10, 624, 36, 1167
	86, 1167
internal mixtures 3	86, 1167 839, 344
internal mixtures 3 International cooperation	86, 1167
internal mixtures 3	86, 1167 839, 344

_				
Internet				1144
Ion-ion re	ecombina	tion		1097
Ireland				1012
Iron oxid	0			819
Irradiance				800
B	roadband	direct		882
D	iffuse fie	ld		800
	irect bear			800
	nortwave			791
	pectral			819
	urface			791
Isokinetic	e measure	ements		658
V				
K Köhler th	eorv			1122
Romer th	cory			1122
L				
Laminar f		reactor	(LFTR)	1115
Land site	S			108
Laser ion	ization m	ass spec	trometer	292
Lead (Pb)			di officier	130, 642
	,			
Lidar				516
Light				
A	bsorption	1		329, 633
	xtinction	28	. 80, 98,	156, 302, 633, 722
			100 570	633 722
		-	00, <i>57</i> 0, 020	033, 722
a		a aa a	<u> </u>	924, 946
Sc	cattering	3, 80, 2	92, 339,	355, 447, 646, 722,
		487, 5	89, 633,	646, 722,
		952.	1003.10	21, 1027,
)86, 1137
	Cov	efficient	1070, 10	65, 266
			•,	
			er unit n	
		ltiangle		469
LIPM me	thod		4	281, 1012
Long-ran	ge transp	ort 130		
20118 1411	5° manop		,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Μ				
Marginal	forcing			841
Marine	-			
	erosols			1012
	oundary l	ovor	202 6	558, 1097
			292,0	
	onditions			498
Se	ources			487
Mass dist	ribution			3
Mass spe	ctrometry	7		975
	ith atmos		recente	210
**	in anno	splicite p		1115
		ization (l	MSAPI)	1115
Material	balances			1167
Mauna Lo	oa Observ	vatory (N	ALO)	
		•		610, 800
Mean esti	imation		-23,	963
				53
Measurer	nem blas			
Metals				130

Meteorological
Conditions 1153
Data 28, 98, 421, 683, 1174
Methy furan 983
3-methylfuran 1057
Mie
Code 905
Scattering modeling 355, 400
Theory 339, 394, 469, 841, 1003, 1027
Mixed layer 459
Mixing heights 754
Modeling 1167
Mohave Power Project (MPP) 86, 166, 181
436, 633, 642, 683, 733, 1153
Momentum 429
Monoterpene oxidation 447
Monte Carlo model407MOUDI impactors469
Mt. Zirkel Visibility Study (MZVS) 98, 243
Mt. Zirkel Wilderness Area (MZWA) 98
Multiangle Imaging 235
SpectroRadiometer (MISR) 235, 819
Multiple
Linear regression 1003
Neural networks1174Multivariate analyses762
withinwavelength suppholometer 1101
Multiwavelength sunphotometer 1161
N
N NADP/NTN network 1167
NNADP/NTN network1167NAPAP emission inventory1167
N1167NADP/NTN network1167NAPAP emission inventory1167National Ambient Air Quality
N NADP/NTN network 1167 NAPAP emission inventory 1167 National Ambient Air Quality Standards (NAAQS) 5, 310, 421
N NADP/NTN network 1167 NAPAP emission inventory 1167 National Ambient Air Quality Standards (NAAQS) 5, 310, 421 National Meteorological Center
N NADP/NTN network 1167 NAPAP emission inventory 1167 National Ambient Air Quality Standards (NAAQS) 5, 310, 421 National Meteorological Center NGM model 213
N NADP/NTN network 1167 NAPAP emission inventory 1167 National Ambient Air Quality Standards (NAAQS) 5, 310, 421 National Meteorological Center NGM model 213 National Oceanic and Atmospheric Admin (NOAA) 23, 130, 610
N NADP/NTN network 1167 NAPAP emission inventory 1167 National Ambient Air Quality Standards (NAAQS) 5, 310, 421 National Meteorological Center NGM model 213 National Oceanic and Atmospheric Admin (NOAA) 23, 130, 610 ATAD model 213
NNADP/NTN network1167NAPAP emission inventory1167National Ambient Air Quality Standards (NAAQS)5, 310, 421National Meteorological Center NGM model213National Oceanic and Atmospheric Admin (NOAA)23, 130, 610 213ATAD model213National Park Service224, 368, 1144
NNADP/NTN network1167NAPAP emission inventory1167National Ambient Air Quality Standards (NAAQS)5, 310, 421National Meteorological Center NGM model213National Oceanic and Atmospheric Admin (NOAA)23, 130, 610 213ATAD model213National Park Service224, 368, 1144 23, 53, 589, 610
N NADP/NTN network 1167 NAPAP emission inventory 1167 National Ambient Air Quality Standards (NAAQS) 5, 310, 421 National Meteorological Center NGM model 213 National Oceanic and Atmospheric Admin (NOAA) 23, 130, 610 ATAD model 213 National Park Service 224, 368, 1144 National parks 53, 589, 610 Near-inftared fluxes 882
NNADP/NTN network1167NAPAP emission inventory1167National Ambient Air Quality Standards (NAAQS)5, 310, 421National Meteorological Center NGM model213National Oceanic and Atmospheric Admin (NOAA)23, 130, 610 213ATAD model213National Park Service224, 368, 1144National parks53, 589, 610 882 Near-inftared fluxes882 896
NNADP/NTN network1167NAPAP emission inventory1167National Ambient Air Quality1167National Ambient Air Quality5, 310, 421National Meteorological CenterNGM modelNGM model213National Oceanic and AtmosphericAdmin (NOAA)Admin (NOAA)23, 130, 610ATAD model213National Park Service224, 368, 1144National parks53, 589, 610Near-inftared fluxes882Near-real time896Nephelometer243, 266, 281, 361, 368,
NNADP/NTN network1167NAPAP emission inventory1167National Ambient Air Quality Standards (NAAQS)5, 310, 421National Meteorological Center NGM model213National Oceanic and Atmospheric Admin (NOAA)23, 130, 610 213ATAD model213National Park Service224, 368, 1144National parks53, 589, 610 882 Near-inftared fluxes882 896
NNADP/NTN network1167NAPAP emission inventory1167National Ambient Air Quality1167National Ambient Air Quality5, 310, 421National Meteorological CenterNGM modelNGM model213National Oceanic and AtmosphericAdmin (NOAA)Admin (NOAA)23, 130, 610ATAD model213National Park Service224, 368, 1144National parks53, 589, 610Near-inftared fluxes882Near-real time896Nephelometer243, 266, 281, 361, 368, 394, 400, 952, 1021, 1086, 1161NESCAUM network1167Nested Grid Model (NGM)201
NNADP/NTN network1167NAPAP emission inventory1167National Ambient Air QualityStandards (NAAQS)Standards (NAAQS)5, 310, 421National Meteorological Center113NGM model213National Oceanic and AtmosphericAdmin (NOAA)Admin (NOAA)23, 130, 610ATAD model213National Park Service224, 368, 1144National parks53, 589, 610Near-inftared fluxes882Near-real time896Nephelometer243, 266, 281, 361, 368, 394, 400, 952, 1021, 1086, 1161NESCAUM network1167Nested Grid Model (NGM)201Enhanced (E-NGM)201
NNADP/NTN network1167NAPAP emission inventory1167National Ambient Air Quality1167National Ambient Air Quality5, 310, 421National Meteorological Center113NGM model213National Oceanic and Atmospheric213Admin (NOAA)23, 130, 610ATAD model213National Park Service224, 368, 1144National parks53, 589, 610Near-inftared fluxes882Near-real time896Nephelometer243, 266, 281, 361, 368, 394, 400, 952, 1021, 1086, 1161NESCAUM network1167Nested Grid Model (NGM)201Enhanced (E-NGM)201Neural networks1174
NNADP/NTN network1167NAPAP emission inventory1167National Ambient Air QualityStandards (NAAQS)Standards (NAAQS)5, 310, 421National Meteorological CenterNGM modelNGM model213National Oceanic and AtmosphericAdmin (NOAA)Admin (NOAA)23, 130, 610ATAD model213National Park Service224, 368, 1144National parks53, 589, 610Near-inftared fluxes882Near-real time896Nephelometer243, 266, 281, 361, 368, 394, 400, 952, 1021, 1086, 1161NESCAUM network1167Nested Grid Model (NGM)201Enhanced (E-NGM)201Neural networks1174New particle formation507, 1097
NNADP/NTN network1167NAPAP emission inventory1167National Ambient Air QualityStandards (NAAQS)Standards (NAAQS)5, 310, 421National Meteorological CenterNGM modelNGM model213National Oceanic and AtmosphericAdmin (NOAA)Admin (NOAA)23, 130, 610ATAD model213National Park Service224, 368, 1144National parks53, 589, 610Near-inftared fluxes882Near-real time896Nephelometer243, 266, 281, 361, 368, 394, 400, 952, 1021, 1086, 1161NESCAUM network1167Nested Grid Model (NGM)201Enhanced (E-NGM)201Neural networks1174New particle formation507, 1097NH4545, 1122
NNADP/NTN network1167NAPAP emission inventory1167National Ambient Air QualityStandards (NAAQS)Standards (NAAQS)5, 310, 421National Meteorological CenterNGM modelNGM model213National Oceanic and AtmosphericAdmin (NOAA)Admin (NOAA)23, 130, 610ATAD model213National Park Service224, 368, 1144National parks53, 589, 610Near-inftared fluxes882Near-real time896Nephelometer243, 266, 281, 361, 368, 394, 400, 952, 1021, 1086, 1161NESCAUM network1167Nested Grid Model (NGM)201Enhanced (E-NGM)201Neural networks1174New particle formation507, 1097NH4545, 1122NH4CL429
NNADP/NTN network1167NAPAP emission inventory1167National Ambient Air QualityStandards (NAAQS)Standards (NAAQS)5, 310, 421National Meteorological CenterNGM modelNGM model213National Oceanic and AtmosphericAdmin (NOAA)Admin (NOAA)23, 130, 610ATAD model213National Park Service224, 368, 1144National parks53, 589, 610Near-inftared fluxes882Near-real time896Nephelometer243, 266, 281, 361, 368, 394, 400, 952, 1021, 1086, 1161NESCAUM network1167Nested Grid Model (NGM)201Enhanced (E-NGM)201Neural networks1174New particle formation507, 1097NH4545, 1122

Nitric acid		302, 768
Nitrogen (I	N)	292, 559
	ioxide (NO ₂)	292, 559 () 459, 570
Nitrogen o	xides (NO _x)	559, 564, 642,
	(- · · · x)	877, 1167, 1174
	Front Range	
	Quality Stu	dy 243, 329
Nucleation	l	1097, 1115
Epi	sodes	507
	eory	479
Numerical	5	
Мо	del	516
	nulations	830
5m	iuiutions	050
0		
Oceans		235, 1137
Opacity		429
Optec		243, 400, 952
Optical		,, , , , , , , , , , , , , , , ,
	sorption	1012
Dep		235, 791, 819,
		5, 868, 905, 917, 1137
Evt	inction	5, 808, 903, 917, 1157 564
		624
	asurements	
Pro	perties	3, 23, 344, 400, 487,
		835, 856, 1003, 1161
Optimal sa Organic	mpling strate	egy 963
Aci	da	1122
	rosols	16, 298, 531
	ifacts	1057, 1066
Car	bon	394, 447, 469,
		531, 570, 1066, 1086
Co	mpounds	5
Gas	ses	98
Par	ticles	1057
Pro	perties	298
Oxalic acid		1122
Ozone (O_3)		447, 459, 516, 559,
S2010 (03)	,	800, 849, 877, 1174
		000, 07, 077, 077, 1177

Р	
Pacific Marine Environmenta	1
Laboratory (PMEL)	23
РАН	646
Particle	
Analysis	939
Beam mass spectrome	eter 939
Concentration	80
Concentrator (PC)	302
Counter	534, 658, 1027
Distribution	819
Scattering	564
Size	80

Particle (cont'd)	
Sizing device	368
Stacking	1012
Particulate matter (PM) 5, 16, 28, 35	, 156,
298, 310, 361	
559, 610, 710, 924	
Apportionment	421
Fine 531, 589	
PM ₁₀ 5, 80, 570 PM ₂₅ 35, 45, 65, 310, 361	J, 946
$PM_{2.5}^{-3} 35, 45, 65, 310, 361 646, 754, 917, 946, 1021,$, 370, 1066
Volatile	991
Particulate organics	16
Peat smoke	1012
Perfluorocarbon	1012
Releases	642
Tracers 166, 181	1,733
pH	670
Photoacoustic spectrometer	329
Photochemical	
Particle production	1137
Processes	459
Reactions	768
Photography Photolysis rate coefficient profiles	896 849
	3,856
Planetary boundary layer	808
Plumes 98, 108, 429, 683, 722, 733,	
PMS probe	516
Point sources 603, 642	2, 754
Polarity	298
Population	
Growth	603
Redistribution	603
Portugal Power plants	1161
Power plants Precipitation 776	65
Weighted concentrations (PWCS)	5, 946 564
Precursor ions	1097
Prediction	1174
Prescribed fires 119, 603	
Process studies	3
PROFEPA	224
Prognostic numerical weather	
prediction models	1021
Project MOHAVE 86, 166, 181, 243	, 436,
633, 642, 683, 733,	
Project VARED Protocol change	201 53
Proton-Proton Coincidence	55
Hydrogen Depth Profiling	1057
Puff-Reversed Trajectory	1057
Oriented Transfer Coefficient	
(PRESTO-TC) model	119
· /	

Pyranometer	791
Pyrheliometer	791
Pyrolysis	983, 1066

Q

	0.20
Quadrupole mass spectrometry	939
Qualitative	
Characterization	624
Information	603
Relationship	1174
Results	310
Quantitative	
Analysis	975, 1115
Results	310, 710
Quartz filters	1057, 1066

R

K	
Radar wind profiler data	213
Radiance	407
Radiation balance	791
Radiative	
Balance	830, 835
Closure	819
Effects	302, 830
Fluxes	808
	108, 235, 498, 800,
	835, 841, 856, 939
Properties	3, 339
Transfer models	3, 830,
	882, 896, 905
Radiosonde data	213
RAMS model	213
Reactive plume model (R	OME) 722
Real time 329, 9	39, 946, 975, 1144
Receptor modeling	421, 710
Refractive index 4	69, 534, 905, 1027
Regional	, , ,
Climate model	3
Haze	35, 361
Scale	754
Relative humidity (RH)	701
	55, 361, 368, 394,
	34, 545, 559, 570,
	58, 841, 946, 1021
Remote data access	1144
Remote sensing	235, 339, 808
Removal processes	5, 1167
REMSAD model	5
Response curves	582
REVEAL	447
REVEAL II	447
RPM model	5, 924

S	
S Sampling	633
Artifacts	302
San Bernardino Mountai	
San Gorgonio Wildernes	
SAQM-AERO model	5, 924
Satellites	108
	235
Remote sensing SCENES	65
SCENES Sea salt	
	292, 487, 498, 1137
Seasonal	15 7(0
Trends	45, 768
Variations	776, 1137
SEAVS (see Southeaster	rn Aerosol and
Visibility Study)	
Secondary	
Organic aerosols	
Particulate organ	
Selective catalytic reduc	
Selenium	642
Semi-volatile aerosols	939
Serially correlated data	963
Ships	108
Shortwave irradiance	791
Sierra Nevada	
Ecosystem Proje	ct (SNEP) 610
Mountain range	610
Simulating Composition	of
Atmospheric Par	ticles at
Equilibrium (SC	
Single	,
Neural networks	1174
Particle analysis	939
Scattering albedo	
Size distributions	487, 498, 507,
	905, 939, 1027, 1057
Size-resolved	,,,,
Aerosol composi	tion 1049
Composition ana	
Particle chemistr	
Sky radiance modeling	407
Smoke	646
Coal	1012
Peat	1012
Smoky Mountains	-
	5, 266, 469, 529, 531
Soil	1137
Solar	
Broadband fluxe	s 882
Flux instruments	
Radiant flux	830
Radiation	459, 776
Radiometers	868
Zenith angle	841
Zeintin angie	0+1

Solven	t				
borven	Extraction				983
	Rinses				298
Soot	Rinses	130 34	44, 361,	529	
Source		150, 5	, 501,	527,	1057
Dource	Apportionm	ent			1153
	Attribution	ient			1153
	Measureme	nt			1167
	Profile	III		642,	
	Tracers			042,	531
Source		n Thro	uch Emr	iniaa	
Source	Identificatio	Eunotic	ugii eiiit		1 751
Course	Orthogonal				
	-receptor rel				110/
Southe	astern Aeros	ol and	V 1S1D111ty	y 2 co	20.4
	Study (SEA	(VS) = 1	05, 243,	368,	394,
	469, 529	, 531, 5	34, 582,	983,	917,
~ .			, 1049, 1	057,	1078
Southe	rn Appalach		untains		
	Initiative (S				582
	rn California	ı Edisor	1	86,	1153
Spatial					
	Correlations	3			421
	Distribution	l	3	, 610	, 841
	Patterns		86, 181	, 516	, 762
	Scale				5
	Trends		4	5,65	, 610
	Variability		516	, 642	, 776
Spearn	nan correlatio	on coeff		,	603
	s optical effi				394
Spectra					
- I	Actinic flux	es			849
	Irradiance				819
Spectro	photometer				917
	d filter units	(SFU)			603
Stucke	Measureme		m		53
Statisti		in syste			00
Statisti	Analysis				710
	Forecast mo	dels			1021
Staam	electric gene		Jonto		28
Stellar	ciccule gene		Jants		20
Stenar	Photometers	-			868
	Radiometer				000
Cub ma			Flootmial	I T+:1:+	•••
<u>5</u> uo-reg	gional <u>C</u> oope			Uuni	у,
	Department				
	National Pa				~~
0.1	and <u>EPA</u> St				65
<u>Su</u> bson	ic Aircraft:				
	<u>Cloud Effec</u>		al <u>S</u> tudy		~ ~~
~	(SUCCESS				, 975
Sulfate			, 45, 86,		
2	92, 302, 339	, 355, 3	94, 429,	436,	487,
4	98, 529, 564	, 570, 5	82, 589,	603,	633,
6	70, 683, 754	, 768, 7	76, 835,	841,	975,
	1049, 1057	7, 1066,	, 1686, 1	115,	1153

Sulfate (SO ₄) (continued)	
Ammoniated	469
Ion mass scattering efficiency	1027
oxides (SO_x)	1153
Tropospheric	1097
Sulfur (S) 45, 53, 65, 13	0.224.
487, 559, 683, 733, 776	
particulate (S_p)	86
	8, 166,
559, 564, 603, 642, 68	, ,
733, 768, 776, 1153	, ,
Sulfur trioxide (SO_3)	429
sulfuric acid (H_2SO_4)	
429, 469, 768, 975	5, 1097
Hydrates	479
Surface	
Albedo	841
Irradiance 79	91, 819
Properties	1122
Tension	1122
Surfactant	1122
Synoptic meteorology	86
Synophic meteororogy	00

Т	
Tandem Differential Mobility	
Analyzer (TDMA)	105, 394
Tapered Element Oscillating	
Microbalance (TEOM)	1021
Telespectrophotometer	407
Temporal	
Correlations	421
Patterns	86, 181
Scale	5
Trend patterns	65
Variability	642, 776
Tethered balloon	516
Thermal desorption and pyrolysis	
GC/MS (TD/Pyro-GCMS)	983
Thermal desorption GC/MS	
(td-GC/MS)	1057
Thermal/Optical Reflectance	
(TOR) method	1066
Thermodynamic	
Aerosol equilibrium model	429
Variables	459
Three-dimensional	
Air quality models	5
Wind fields	213
Three-way positive matrix	
factorization (PMF3)	1137
Time-resolved aerosol composition	1049
Title IV	564

Trace	
Elements	670, 710, 1086
Metals	710
Tracer mass balance regre	ession
(TMBR) model	683
	33, 733, 1057, 1153
Perfluorocarbon	
Source	531
Species	140
Tracking and Analysis	
Framework (TAF)	564
Transmissometer	281, 624
	- , -
Transport 3, 28,	119, 130, 166, 610,
	52, 776, 1153, 1161
Long-range 13	30, 436, 1049, 1137
Seasonal	140
Trends analysis	53, 65, 603
Troposphere	658, 849, 877
Upper	545, 975
	545, 975
Troposphenc	22 075
Aerosol particles	23, 975
Aerosol Radiative	
Observational Exp	
(TARFOX)	108, 830, 856
Sulfate	1097
Turbulent diffusion mode	459
U	
UAM-AERO model	5, 924
UAM-AERO model UAM-AIM model	5, 924 5
UAM-AERO model UAM-AIM model UAM-LC model	5, 924 5 5
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet	
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes	849
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet	
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes Radiation	849
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes Radiation	849 877
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes Radiation Uncertainty Upper troposphere	849 877 791, 808, 877, 1167 545, 975
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes Radiation Uncertainty	849 877 791, 808, 877, 1167 545, 975
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes Radiation Uncertainty Upper troposphere Upward scattered fraction	849 877 791, 808, 877, 1167 545, 975
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes Radiation Uncertainty Upper troposphere Upward scattered fraction Urban	849 877 791, 808, 877, 1167 545, 975 3 400
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes Radiation Uncertainty Upper troposphere Upward scattered fraction Urban Aerosol Airshed	849 877 791, 808, 877, 1167 545, 975 3 400 849
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes Radiation Uncertainty Upper troposphere Upward scattered fraction Urban Aerosol Airshed Visibility	849 877 791, 808, 877, 1167 545, 975 3 400 849 361
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes Radiation Uncertainty Upper troposphere Upward scattered fraction Urban Aerosol Airshed Visibility U.S. Congress	849 877 791, 808, 877, 1167 545, 975 3 400 849 361 86, 213, 589
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes Radiation Uncertainty Upper troposphere Upward scattered fraction Urban Aerosol Airshed Visibility U.S. Congress U.S. Department of Agric	849 877 791, 808, 877, 1167 545, 975 3 400 849 361 86, 213, 589 culture 610
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes Radiation Uncertainty Upper troposphere Upward scattered fraction Urban Aerosol Airshed Visibility U.S. Congress	849 877 791, 808, 877, 1167 545, 975 3 400 849 361 86, 213, 589 culture 610
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes Radiation Uncertainty Upper troposphere Upward scattered fraction Urban Aerosol Airshed Visibility U.S. Congress U.S. Department of Agrice Forest Service (US	849 877 791, 808, 877, 1167 545, 975 3 400 849 361 86, 213, 589 culture 610
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes Radiation Uncertainty Upper troposphere Upward scattered fraction Urban Aerosol Airshed Visibility U.S. Congress U.S. Department of Agric Forest Service (US	849 877 791, 808, 877, 1167 545, 975 4 400 849 361 86, 213, 589 culture 610 SFS) 243, 610
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes Radiation Uncertainty Upper troposphere Upward scattered fraction Urban Aerosol Airshed Visibility U.S. Congress U.S. Department of Agric Forest Service (US	849 877 791, 808, 877, 1167 545, 975 400 849 361 86, 213, 589 culture 610 SFS) 243, 610 86
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes Radiation Uncertainty Upper troposphere Upward scattered fraction Urban Aerosol Airshed Visibility U.S. Congress U.S. Department of Agric Forest Service (US V Variance techniques Vehicle exhaust	849 877 791, 808, 877, 1167 545, 975 4 400 849 361 86, 213, 589 culture 610 SFS) 243, 610
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes Radiation Uncertainty Upper troposphere Upward scattered fraction Urban Aerosol Airshed Visibility U.S. Congress U.S. Department of Agric Forest Service (US V Variance techniques Vehicle exhaust Vertical	$ \begin{array}{r} 849\\ 877\\ 791, 808, 877, 1167\\ 545, 975\\ 3 400\\ 849\\ 361\\ 86, 213, 589\\ culture 610\\ SFS) 243, 610\\ 86\\ 98, 646 \end{array} $
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes Radiation Uncertainty Upper troposphere Upward scattered fraction Urban Aerosol Airshed Visibility U.S. Congress U.S. Department of Agrice Forest Service (US V Variance techniques Vehicle exhaust Vertical Actinic fluxes	849 877 791, 808, 877, 1167 545, 975 4 400 849 361 86, 213, 589 culture 610 SFS) 243, 610 86 98, 646 849
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes Radiation Uncertainty Upper troposphere Upward scattered fraction Urban Aerosol Airshed Visibility U.S. Congress U.S. Department of Agric Forest Service (US V Variance techniques Vehicle exhaust Vertical Actinic fluxes Dispersions	849 877 791, 808, 877, 1167 545, 975 400 849 361 86, 213, 589 culture 610 SFS) 243, 610 86 98, 646 849 754
UAM-AERO model UAM-AIM model UAM-LC model Ultraviolet Actinic fluxes Radiation Uncertainty Upper troposphere Upward scattered fraction Urban Aerosol Airshed Visibility U.S. Congress U.S. Department of Agrice Forest Service (US V Variance techniques Vehicle exhaust Vertical Actinic fluxes	849 877 791, 808, 877, 1167 545, 975 4 400 849 361 86, 213, 589 culture 610 SFS) 243, 610 86 98, 646 849

Vicarious calibration	819
Virtual impactor	302
VISHWA model	5
Visible	
Actinic fluxes	849
Radiation	1057
Visibility 28, 35, 80	, 156,
166, 281, 368, 394, 407, 447,	, 531,
534, 531, 559, 564, 582, 589,	, 603,
624, 642, 683, 917, 924, 946,	1144
Effects	119
Measurements	98
Model	16
Urban	361
Visibility Assessment	
Scoping Model (VASM)	564
Visibility Assessment	
Screening Technique (VAST)	559
Visual air quality	
image processing system	896

Volatile	
Aerosols	939
Inorganic compounds	841
Organic compounds (VOC))
	983, 1174
Particulate matter	991
Volcanic eruptions	1137

W

••			
Water	105, 394	4, 429, 469, 47	9, 529,
	534, 658, 800	, 841, 975, 991	1,1122
А	cidity of surfac	ce	768
Waterton-Glacier International Park		ational Park	156
Wet depo	osition	564, 670, 776	5, 1167
White ha	ze		722
White M	ountain		
Ν	ational Forest	(WMNF)	589
Wild fire	S	119, 603, 61	10, 642
Wilderne	ess areas		589
Wind			683
F	ield	43	36, 754
F	low patterns		98
S	peed		487
World W	ide Web		1144

Z Zdanovskii-Stokes-Robinson(ZSR) 394, 469 Zinc (Zn) 130

Author Index

Α		D	
Abdou, W.A.	819	Damberg, Richard	35
Ackerman, Thomas P.	800	Das, M.	768
Ahossane, Kadio	65	Davidovits, P.	939
Allen, George	361, 946	Day, Derek E.	
Ames, Michael	710, 1078		34, 952, 1027, 1049
Ames, Rodger B.	355, 534, 683, 1027	Delgado, Jaime	603
Anderson, Tad L.	23	DeLuisi, J.J.	905
Arnott, W. Patrick	329	Dick, William D.	394, 469
Arstila, H.	479	Dickson, Ronald J.	98
Ashbaugh, Lowell L.	213, 610, 983	Dietrich, David	98
		Diner, David J.	235
В		Ding, Yiming	302
Bates, Timothy S.	3, 23	Dutcher, Dabrina D.	
Barthelmie, Rebecca J.	447, 516		83, 991, 1049, 1057
Baumgardner, Darrel	658	Dutkiewicz, V.A.	768
Baumgardner, Ralph	1086	Dutton, Ellsworth G.	791, 800
Beal, Jack	710	Dye, Timothy S.	946
Bergin, Mike H.	498		
Bergstrom, Robert	808, 830, 882	E	
Blando, James D.	298	Easter, Robert C.	868
Blumenthal, Donald	98	Eatough, Delbert J.	302, 633, 1153
Bowers, Kenneth	610	Eatough, Norman L.	302
Brewer, Patricia F.	582	Eldred, Robert A.	281, 610,
Bruegge, C.J.	819		1049, 1057, 1066
Bugalho, Lourdes	1161	Emory, Chris	98
Buhr, Martin	570		
		F	
C		Farber, Robert J.	
Cahill, Catherine F.	98, 487, 1012	86, 181,	201, 213, 642, 1153
Cahill, Thomas A. 130,		Farrell, Derek	1012
Campbell, Dave	281	Flores, Miguel	224
Carlson, Joan	589	Fox, Dave	156
Carlton, Annmarie G.	298	Fuller, Kirk A.	344
Castaneda, Carlos P.	1057		
Che, Jianmei	670, 1078	G	
Chitwood, Derek E.	917	Gaitley, B.J.	819
Chow, Judith C.	80, 98	Gebhart, Kristi A.	224
Cismoski, David S.	1144	Geever, Michael	487
Clough, Tony	830	George, Michael	310
Cobb, Donald	98	Ghan, Steven J.	868
Coffman, Derek J.	23	Golestani, Yahya	896
Coggiola, Michael J.	975	Gone, Jec-Kong	1078
Cohen, David D.	646	Gras, John L.	3, 646
Conel, J.E.	819	Green, Mark C.	166, 181, 213
Copeland, Scott	582, 624	Guise-Bagley, Len F.	156, 1021
Covert, David S.	23	Gullu, Gulen	670, 710
Crist, Kevin	877		
Cui, Wenxuan	633		
Cummins, Patrick	570		

п		Lahm Datan	110
H Hadiiialei Lubamin	1174	Lahm, Peter	119
Hadjiiski, Lubomir	1174	Landreneau, Joey	1086
Hand, Jenny L.	534, 1027	Larson, Nels	800
Hanson, Donald A.	564	Laulainen, Nels S.	559, 800, 868, 1115
Harper, Wendy	589	Lavery, Thomas F.	1086
Harris, Joyce M.	130	Ledeboer, W.C.	819
Haywood, Jim	835	Li, Zhidong	1122
Helmlinger, M.C.	819	Livingston, J.M.	856
Henry, Ronald C.	65, 407, 754, 917	Lowenthal, Douglas H.	80
Hering, Susanne	400		
Higashi, Richard M.	983, 1057	Μ	
Hignett, P.	808, 856	Macias, Edward S.	1003
Hildemann, Lynn M.	529, 531, 1078	Magliano, Karen L.	80
Hill, L. Bruce	589	Mahadev, Shudeish	65, 407, 917
Hobbs, P.V.	108	Malm, William C.	45, 53, 224,
Hoff, Raymond M.	156, 516, 1021		4, 355, 368, 529, 534,
Hopke, Philip K.	421, 1137, 1174		3, 896, 952, 963, 1027
Huang, Xudong	670	Martonchik, John V.	235, 819
Huber, Cindy	582	McDade, Charles E.	28, 400, 722
Hull, Jeffery	633	McDonald, Karen	156
Hurwitt, Siana	946	McInnes, Lynn M.	498
Husain, Liaquat	768	McKendry, Ian G.	516
Husar, Rudolf	776, 1167	McMurry, Peter H. 105	
Husar, Rudon	//0,110/	Meng, Richard Z.	429
Ι		Michalsky, Joseph J.	791
Isil, Selma	1086	Middlebrook, A.M.	292
	53, 603, 963		559
Iyer, Hari	55,005,905	Middleton, Paulette	1115
т		Mikheev, Vladimir B.	
J Jacobson Mark 7	849	Mirabella, Vincent A.	642, 733 507
Jacobson, Mark Z.	939	Mirme, Aadu Mishaharka, Mishaal I	
Jayne, J.T.		Mishchenko, Michael I	
Jennings, S. Gerard	487, 1012	Mlawer, Eli	830
John, Kuruvilla	877	Molenar, John V.	243, 407, 896
V		Moore, Charles Thoma	
K NI DII	225	Moosmüller, Hans	329
Kahn, Ralph	235	Moran, William A.	86, 754
Kapustin, Volodia N.	23	Morris, Ralph	98
Karamchandani, Prakas		Mueller, Peter K.	28,722
Kato, Seiji	800	Murphy, D.M.	292
Keskin, Sinan	670	Murray, Craig	86
Kikas, Ülle	507	Musarra, Stefan	105, 394, 529
Kinne, Stefan	808, 830, 856, 882		
Kolb, C.E.	939	Ν	
Kopperud, Royal	531	Nenes, Athanasios	841
Koutrakis, Petros	16, 361, 529		
Kreidenweis, Sonia M.		0	
	, 368, 534, 952, 1027	Ogren, John A.	23, 498
Kreisberg, Nathan	400	Oh, J. Annie	361, 946
Kuhns, Hampden	181	Olmez, Ilhan	529, 670, 710, 1078
Kulmala, M.	479		
_		P	.
L		Pai, Prasad	201, 213, 722
Laaksonen, A.	479	Pandis, Spyros N.	841
Laasonen, K.	479	Pang, Yanbo	302

Patterson, Paul	53, 603, 963
Perley, Brian P.	281
Perry, Kevin D.	130, 991, 1049, 1057
Pervukhin, Viktor V.	1115
Petropavlovskikh, I.V.	905
Pilewskie, Peter	830
Pilinis, Christodoulos	841
Pilorz, S.H.	819
Pink, Francis	670
Pitchford, Marc	181
Polissar, Alexandr V.	1137
Porcja, Robert J.	298
Pryor, Sara C.	447, 516

Q Qu

Y Y		
Quinn,	Patricia K.	23

R

Raga, A.C.	459
Raga, G.B.	459
Ramaswamy, V.	835
Raunemaa, Taisto	507
Richards, L. Willard	80, 98, 361, 924, 946
Roach, Jesse	531
Robinson, Norman F.	642
Rogers, C. Fred	329
Rood, Mark J.	23, 1122
Ruíz-Suárez, L.G.	459
Russell, Phillip B.	108, 808, 856

S

Saxena, Pradeep 1	6, 28, 105, 394, 529, 722
Saxena, V.K.	905
Schichtel, Bret A.	776, 1167
Schnell, Russell C.	130
Seifert, Marco A.	1012
Seigneur, Christian	5, 28, 429, 722
Shannon, Jack D.	564
Shi, Zhouzhong	975
Shulman, Michelle	531
Silva, Ana Maria	1161
Sisler, James F.	35, 45, 53, 355
Sokolik, Irina	830
Solomon, Paul A.	80
Stowe, L.L.	108, 856

Т	
Tabazadeh, Azadeh	545
Tamm, Eduard	507
Tanner, Roger L.	302
Thomson, D.S.	292
Tombach, Ivar	28, 166, 201, 400, 722
Toon, Brian	830
Toon, Owen B.	545, 882
Travis, Larry D.	339
Tree, Roger M.	952, 1144
Turco, Richard P.	1097
Turpin, Barbara J.	16, 298, 1003
X 7	
V VanCuron Tony	110
VanCuren, Tony	de P 140 1003
Vasconcelos, Luis A.	de P. 140, 1003 479
Viisanen, Y.	479
Vimont, John C.	430
W	
Wakabayashi, Paul H.	487
Warner, Kevin	302
Watson, John G.	80, 98, 642, 1153
Wenny, B.N.	905
West, J. Jason	841
West, Robert A.	235
White, Warren H.	762, 1003
Williams, Allen L.	1122
Wong, J.	856
Worsnop, D.R.	939
Γ,	
X	
Xie, Yu-Long	1137
Y	
Young, Steve E.	975
Yu, Fangqun	1097
Yu, Liya E.	531
Yu, Shaocai	905
Yue, G.K.	905
1 40, 0.11.	705
Z	
Zhao, Jing-Xia	1097
Ziemann, Paul J.	469