ASCENT (Atmospheric Science and Chemistry mEasurement NeTwork): A new long-term, ground-based high time-resolution air quality monitoring network

ASCENT Team:
PI: Nga Lee (Sally) Ng, Georgia Institute of Technology,
Steering Committee: Ann M. Dillner, University of California, Davis, Roya Bahreini, University of California, Riverside, Armistead Russell, Georgia Institute of Technology,
Site/Instrument Mentors: Drew Gentner, Yale University, Robert Griffin, Roger Williams University, Leila Hawkins, Harvey Mudd, Jose L. Jimenez, University of Colorado, Boulder, Jingqiu Mao, University of Alaska, Fairbanks, Shane Murphy, University of Wyoming, Albert Presto, Carnegie Mellon University, Allen Robinson, Carnegie Mellon University, John Seinfeld, California Institute of Technology, Jason Surratt, University of North Carolina, Chapel Hill, Joel Thornton, University of Washington

IMPROVE Steering Committee Meeting, November 9-10, 2021, virtual
ASCENT: A new long-term, ground-based high time-resolution air quality monitoring network

- Long-term
 - 3 year NSF Infrastructure grant ($12M)
 - 10+ year plan with anticipated funding from NSF
- Ground-based
 - 12 sites measuring PM2.5 (map and list on following pages)
 - Use sites in existing networks
 - Leverage existing measurements, infrastructure, personnel
 - Provides additional data for these sites
 - IMPROVE, NCore/PAMs, SCAQMD, NEON (NSF National Ecological Observatory Network), HNET (Houston Network of Environmental Towers)
ASCENT: Atmospheric Science and Chemistry mEasurement NeTwork

IMPROVE sites:
Cheeka Peak/Makah, WA
Joshua Tree NP, CA
Yellowstone NP, WY
Great Smoky Mountain NP, NC

NCore/CSN sites/PAMS:
Rubidoux, CA
La Casa, Denver, CO
Lawrenceville, Pittsburgh, PA
Queens College 2, NYC, NY
South DeKalb, Atlanta, GA

NEON: Delta Junction, AK

SCAQMD: Los Angeles - Pico Rivera, CA

HNET: Houston, TX

https://research.gatech.edu/12-million-nsf-grant-will-establish-nationwide-atmospheric-measurement-network
Sites – why we chose these

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Local Site Name</th>
<th>Current Network</th>
<th>Instrument Mentor</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Delta Junction, AK</td>
<td>NEON</td>
<td>Jingqiu Mao</td>
<td>Remote, arctic, background, boreal forest, intercontinental transport, EPSCoR</td>
</tr>
<tr>
<td>2</td>
<td>Cheeka Peak/ Makah</td>
<td>IMPROVE</td>
<td>Joel Thornton</td>
<td>Marine background/inflow, smoke at times, tribal site</td>
</tr>
<tr>
<td>3</td>
<td>Los Angeles-Pico Rivera</td>
<td>AQMD</td>
<td>John Selinfeld</td>
<td>Paired site 1: urban, anthropogenic, VCP, wildfires</td>
</tr>
<tr>
<td>4</td>
<td>Rubidoux</td>
<td>NCore, PAMS</td>
<td>Roya Bahreini</td>
<td>Paired site 2: urban, anthropogenic, aged OA, wildfires</td>
</tr>
<tr>
<td>5</td>
<td>Joshua Tree</td>
<td>IMPROVE</td>
<td>Lelia Hawkins & Roya Bahreini</td>
<td>Paired site 3: aged OA, downwind of LA and Riverside</td>
</tr>
<tr>
<td>6</td>
<td>Yellowstone NP 2</td>
<td>IMPROVE</td>
<td>Shane Murphy</td>
<td>Background site with wildfires, EPSCoR</td>
</tr>
<tr>
<td>7</td>
<td>La Casa</td>
<td>NCore, PAMS</td>
<td>Jose Jimenez</td>
<td>Urban, wintertime pollution, oil and gas, wildfires, agriculture</td>
</tr>
<tr>
<td>8</td>
<td>Houston-UH West Liberty</td>
<td>HNET</td>
<td>Robert Griffin</td>
<td>Urban, petrochemical industry, maritime shipping</td>
</tr>
<tr>
<td>9</td>
<td>Lawrenceville</td>
<td>NCore, PAMS</td>
<td>Allen Robinson & Albert Presto</td>
<td>Urban, oil and gas, fracking, heavy industry</td>
</tr>
<tr>
<td>10</td>
<td>Queens College 2</td>
<td>NCore, PAMS</td>
<td>Drew Gentner</td>
<td>Urban, coastal, VCP</td>
</tr>
<tr>
<td>11</td>
<td>South DeKalb</td>
<td>NCore, PAMS</td>
<td>Nga Lee Ng</td>
<td>Paired site 1: urban, biogenic</td>
</tr>
<tr>
<td>12</td>
<td>Great Smoky Mountains NP - Look Rock</td>
<td>IMPROVE</td>
<td>Jason Surratt</td>
<td>Paired site 2: background, biogenic</td>
</tr>
</tbody>
</table>

EPSCoR = NSF designation of states, territories targeted for strengthening STEM capacity and capability.
VCP = Volatile Chemical Products (cleaning, personal care products)
High Time-Resolution Aerosol Instrumentation

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Model and Manufacturer</th>
<th>Measurements</th>
<th>Typical Data Rate</th>
<th>Detection limit (30 min)</th>
<th>Calibration Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerosol Chemical Speciation Monitor (ACSM)</td>
<td>ToF-ACSM, Aerodyne Research</td>
<td>Organics, sulfate, nitrate, ammonium, chloride</td>
<td>10 min</td>
<td>< 30 ng m⁻³</td>
<td>Quarterly</td>
</tr>
<tr>
<td>Xact</td>
<td>625i, Cooper Environmental</td>
<td>Trace metals: Sb, As, Ba, Cd, Ca Cr, Co, Cu, Fe, Pb, Hg, Mn, Ni, Se, Ag, Sn, Ti, Tl, V, Zn, more available</td>
<td>15-240 min</td>
<td>< 10 ng m⁻³ for key metals</td>
<td>Quarterly</td>
</tr>
<tr>
<td>Aethalometer</td>
<td>AE33, Magee Scientific</td>
<td>Wavelength-dependent absorption; black and brown carbon</td>
<td>1 sec or 1 min</td>
<td>5.5 ng m⁻³ of BC (5 lpm)</td>
<td>Quarterly</td>
</tr>
<tr>
<td>Scanning Mobility Particle Sizer (SMPS)</td>
<td>3938L89, TSI</td>
<td>Particle number size distribution, number concentration</td>
<td>3 min (full scan)</td>
<td>< 1 cm⁻³</td>
<td>Quarterly</td>
</tr>
</tbody>
</table>
Aerosol Chemical Speciation Monitor (ACSM)

Continuous online measurements
Non-refractory PM
 organics aerosol (OA)
 HOA – hydrocarbon like
 OOA – oxygenated
 inorganic ions
Minimal maintenance and remote control/data acquisition
Simpler to maintain and operate than the AMS
First deployed ~10 years ago
Upgrade site infrastructure as needed

- New or upgraded trailer
- Wifi
- Power
- Meteorological measurements

(Courtesy of Odelle Hadley)
Site Operators

• Involved in decision to include site in network
• Site mentors and graduate students will train to operate and do simple maintenance on instrumentation
• Provide eyes at the site if something goes wrong
• Modest pay for additional work

Joshua Tree site
Data infrastructure developed during project

- open and free access to the ASCENT data
- automated data quality assurance/control
- upload/download
- discovery/visualization
- long-term data preservation
- Hosted by NCAR
FT-IR to enhance organics information from ACSM

- Organic functional groups measured from filters (except AK).
- Functional groups complementary to ACSM organics data
- Laboratory and smog chamber samples analyzed in parallel by FT-IR and ACSM will be used to:
 - Improve FT-IR functional group measurements
 - Develop parameterizations of ACSM data to increase the chemical resolution of OA from the ACSM
- Parameterizations incorporated into the routine ACSM data analysis tools for chemical composition and source apportionment as part of the ASCENT data infrastructure.
Real-time Source Apportionment

- SoFi (Source Finder software, Datalystica)
- utilizes data from ACSM, Xact, aethalometer, and SMPS
- uses gas phase data available at all sites
- performs deconvolution by applying the PMF algorithm governed through the multilinear engine (ME-2)

Example of Source Apportionment from AMS data

Manousakas et al., 2020
Science and Outreach

- Data from ASCENT will address questions related to:
 - changes in composition and abundance of aerosols,
 - changes in sources, for example
 - modernization of electrical production (coal to NG to renewable)
 - transportation (gasoline to electric vehicles)
 - process-level understanding of aerosols in response to changes in infrastructure, energy systems, and land use/coverage
 - impacts on health and climate-relevant variables
- Education and outreach
 - Career development for grad students, focus on underrepresented
 - At Cheeka Peak/Makah, train tribal air quality staff and perform outreach to interested tribal members.
ASCENT organizational chart
Timeline

Year 1 – purchase, test and install instruments at sites, web page, database development begins

Year 2 – instruments operational, begin training operators, FT-IR lab and smog chamber studies, database operational, source apportionment work begins

Year 3 – instruments operational, continued training of operators, FT-IR parameterization development, database development, source apportionment work finalized
Deliverables from ASCENT

- 12 sites with operational ACSM, Xact, aetholometer, SMPS instruments
 - Support infrastructure such as power, wifi, weather data
 - Trained operators
- Database and user interface
 - High-time resolution organics (with FTIR parameterization), sulfate, nitrate, ammonium, chloride, trace metals, light absorption, black and brown carbon, size distribution and number concentration
 - High-time resolution source apportionment

Data to be used by researchers to answer science questions
ACTRIS - Aerosol, Clouds, Trace gases Research Infrastructure

Pan-European network, ~110 sites

Essential part of the agenda is the coordinated long-term measurement of aerosol chemistry with ACSMs

In situ aerosol measurements (various)

• ACSM (21 sites)
• Aetholometer (27 sites)
• Integrating Nephelometer
• Various particle size and concentration instr.
• Thermo-optical method on quartz filters
• Filter-based XRF/PIXE/ICP_OES/ICP_MS
• Filter-based IC, GC-MS HPLC-MS, LC/MS

ASCENT will leverage ACTRIS experience, especially on

• Database of high time res data (ACSM)
• Real-time source apportionment (SoFi)
ASCENT: Atmospheric Science and Chemistry mEasurement NeTwork

- New PM network
- 12 sites
- Open access to high time-resolution data
- Evaluate trends, impact of policy, change in energy strategy
- Provides data and source apportionment resources for researchers, policy makers, public
Thanks for assistance with site selection:

Bret Schichtel, Scott Copeland, Tony Prenni and John Vimont (IMPROVE)
Joann Rice, Melinda Beaver, Tim Hanley (EPA – NCore)
Rommel Zulueta (Battelle, NEON)
Rene Burmudez (SCAQMD)
Jimmy Flynn (University of Houston, HNET)
Site operators