

JCDAVIS

VILA1

TALL1

Total = 160 Sites

New Sites

- DINO, 10/29/2018
- TOOL, 11/9/2018
- SOGP, 10/1/2019
- VIIS back online since 12/2018
- Full suite of modules at ATLA1 and PITT1 as of summer 2019

UCDAVIS

* Inserts not to scale

KALM1 CRLA1

LAV01

BYIS1 South Korea

Hawaii TOOL

Alaska

NOCH1

GRSA1

1 BOLA1

WICA BADL1

NEBR1

CEBL1

WMO1

---TRIBE Virgin Islands

Affiliated Agency

DOE

----South Korea

BOND1

MACA1

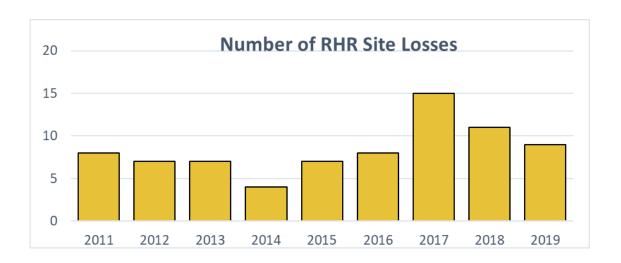
EGBE1

DETR1

Effective 10/9/2019

BRIG1

Analysis and Delivery Status


All 2018 data have been delivered to AQS and FED.

2019	lons	Carbon	Elements	HIPS	Validation	Delivery (AQS & FED)
January	✓	\checkmark	✓	\checkmark	(×
February	✓	✓	\checkmark	\checkmark	(æ
March	✓	×	✓	\checkmark	*	×
April	✓	x	✓	x	×	x
May	✓	x	✓	x	×	×
June	*	×	.	x	*	×
July	*	×	*	x	*	×
August	*	×	*	x	*	×
September	×	×	x	*	×	*

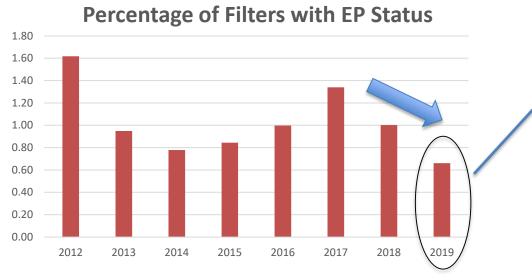
Regional Haze Rule (RHR) Completeness Criteria

RHR requires for all modules:

- < 11 consecutive missed samples
- > 50% recovery in each quarter
- > 75% annual recovery

2011-2018: Final number of losses after completion of full validation.

<u>2019</u>: Number of losses year-to-date.


Site status report distributed every quarter; if you aren't on the list, let us know

Site losses in 2019

Government shutdown in January resulted in 9+ consecutive lost samples (NS) at most sites

- BOAP1 (FWS): 12 consecutive PO samples in Q1
- 2. BYIS1 (SKorea): 13 consecutive NS samples
- 3. FLAT1 (Tribe): 31 samples lost this year (mostly NS samples)
- 4. FLTO1 (FS): 12 consecutive samples lost in Q1 (mostly NS samples)
- 5. FOPE1 (Tribe): 19 samples lost in Q1 (mostly NS samples)
- 6. IKBA1 (FS): 20 samples lost in Q1 (mostly NS samples)
- 7. MING1 (FWS): 12 consecutive NS samples in Q1
- 8. THRO1 (NPS): 12 consecutive NS+EP samples in Q1
- 9. BLIS1 (FS): >10 consecutive PO, electricity shut due to code violations

New Controller Helps Save Samples

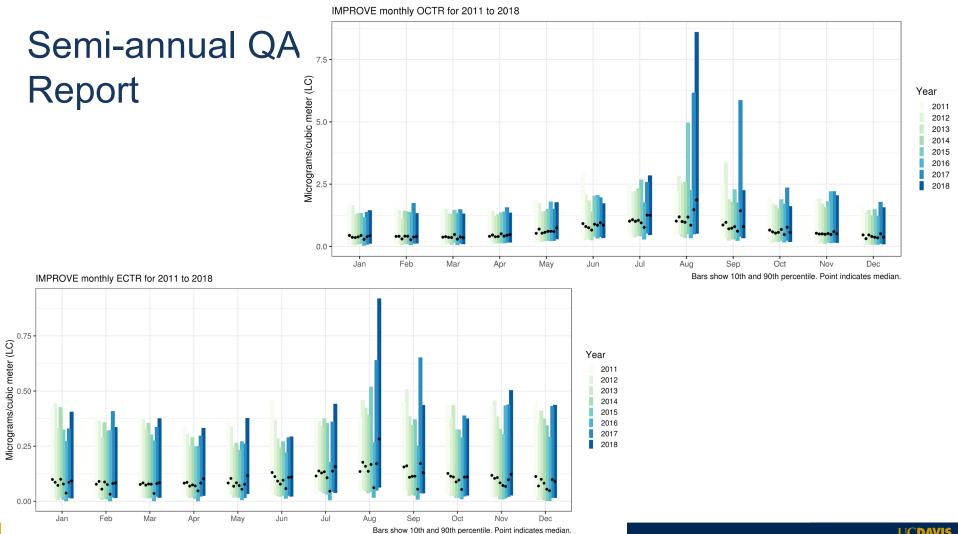
- As of this week, internetconnected new controllers have been deployed throughout the IMPROVE network
- Daily data downloads
- Fast problem identification and troubleshooting

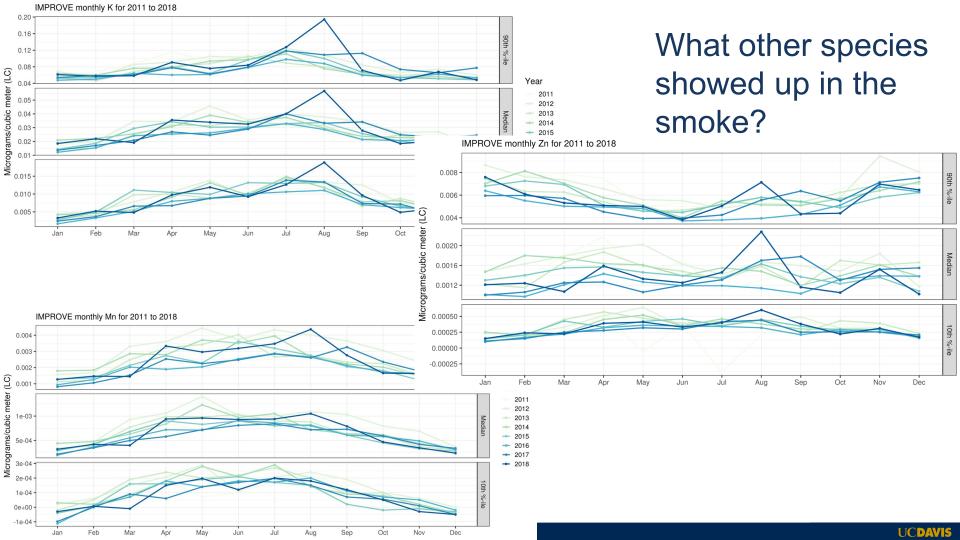
Improve Management Site Home XRF Analysis Data Operations Reports Admin Log in

Home Alerts Status Exceptions Pumps Zeroes Filter Readings Import

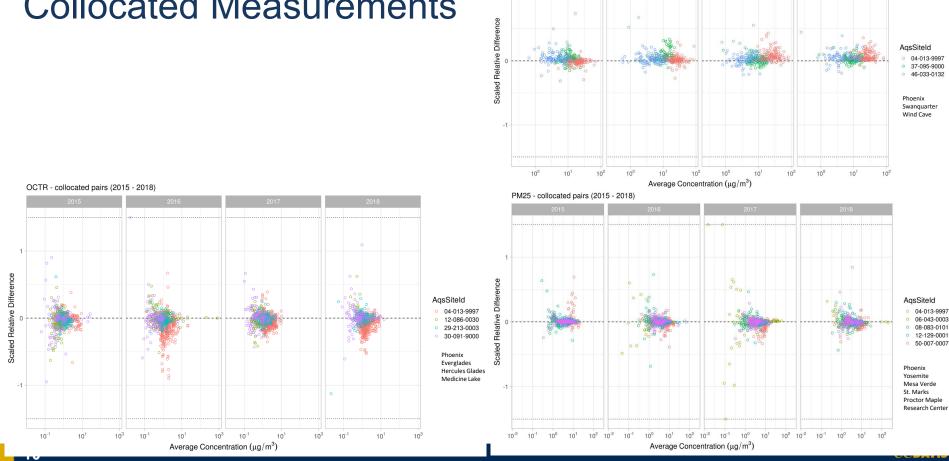
Show readings

Network Summary (157 out of 160 samplers)


WICA1 0 WIM01 0 YELL2 0 YOSE1 0 ZICA1 0


																0.1011 0.11		
ACAD1 📵	AGTI1 👩	ATLA1 👩	BADL1 ①	BALD1 0	BAND1 ()	BIBE1 0	BIRM1 💿	BLIS1 0	BOAP1 0	BOLA1 (1)	BOND1 ()	BOWA1 (1)	BRCA1 🗿	BRID1 🗿	BRIG1 0	BRIS1 ()	CABA1 🗿	CABI1 🗿
CACO1 💿	CACR1 💿	CANY1 👩	CAPI1 ①	CAVE1 ①	CEBL1 0	CHAS1 👩	CHIR1 👩	COHU1 👩	CORI1 0	CRLA1 👩	CRMO1 ①	DENA1 💿	DETR1 💿	DINO1 👩	DOME1 0	DOSO1 👩	EGBE1 ①	EVER1 💿
FCPC1 (0)	FLAT1 0	FLT01 O	FOPE1 0	FRES1 0	FRRE1 0	GAMO1 ①	GICL1 O	GLAC1 O	GRBA1 0	GRCA2 🗿	GRGU1 ①	GRRI1 ①	GRSA1 💿	GRSM1 💿	GUMO1 0	HECA1 0	HEGL1 0	H00V1 0
IKBA1 💿	ISLE1 💿	JARB1 💿	JARI1 0	JOSH1 0	KAIS1 0	KALM1 0	KPB01 0	LABE1	LASU2 0	LAVO1 🗿	LIGO1 O	LOND1	LOST1 0	LTCC1 O	LYEB1 0	MACA1 0	MAKA2 💿	MAVI1 3
MEAD1 📵	MELA1 💿	MEVE1 👩	MING1 🔼	моно1 💿	MOMO1 ()	MONT1 ()	M00S1 0	MORA1 💿	MOZI1 0	NEBR1 👩	NOAB1 ()	NOCA1	NOCH1	NOGA1 👩	OKEF1 👩	OLYM1 👩	ORPI1 👩	OWVL1 👩
PACK1 💿	PASA1 💿	PEFO1 👩	PENO1 ①	PHOE1 0	PHOE5 ①	PINN1 ①	PITT1 0	PMRF1 💿	PORE1 0	PRIS1 0	PUSO1 👩	QUCI1 👩	RAFA1 👩	REDW1 🗿	ROMA1 0	ROMO1 👩	SACR1 0	SAGA1 ①
SAGO1 👩	SAGU1 👩	SAMA1 👩	SAPE1 ①	SAWE1 ①	SAWT1 ①	SENE1 ①	SEQU1 0	SHEN1	SHMI1 ①	SHRO1 0	SIME1 @	SIPS1 🗿	SNPA1 🗿	SOGP1 0	STAR1 0	STIL1 0	SULA1 0	SWAN1 0
SYCA2 0	TALL1 0	THBA1 🗿	THRO1 0	THSI1 0	TONT1 0	T00L1 ()	TRCR1 0	TRIN1 (0)	ULBE1 0	UPBU1 0	VIIS1 🗿	VILA1 0	VOYA2 0	WEMI1 0	WHIT1 ①	WHPA1 0	WHPE1 0	WHRI1 0

Color key:


300d Offline site Missed check in Internet problem Warning Needs attention Info								
Name	Last Checkin	Last Flow Data	Alert Count	Online Modules	Controller State	Installed Filters		
ACAD1	10/17/2019 1:00:05 AM	10/17/2019 12:59:02 AM	0 Alerts	4/4 Online	NORMAL	[1: 10/18/2019] [2: 10/21/2019] [3: 10/15/2019]		
AGTI1	10/17/2019 1:00:05 AM	10/17/2019 12:59:02 AM	0 Alerts	4/4 Online	NORMAL	[1: 10/9/2019] [2: 10/12/2019] [3: 10/15/2019]		
ATLA1	10/17/2019 1:00:05 AM	10/17/2019 12:59:02 AM	0 Alerts	4/4 Online	NORMAL	[1: 10/18/2019] [2: 10/21/2019] [3: 10/15/2019]		
BADL1	10/17/2019 2:00:00 AM	10/17/2019 1:59:02 AM	0 Alerts	4/4 Online	NORMAL	[1: 10/18/2019] [2: 10/21/2019]		

Show all sites

Semi-annual QA Report Collocated Measurements

PM10 - collocated pairs (2015 - 2018)

Data Advisories in 2019

Correction of Chloride Concentrations for Filter Blank Levels

Released: 03/2019

Period Impacted: 2007 - 2011

2. Changes to HIPS System

Released: 04/2019

Period Impacted: January 2017 to present

3. Method Change for Calibrating Flow Rate Transfer Standards

Released: 05/2019

Period Impacted: January 2015 to present

4. Change in Analytical Protocol for XRF Analysis

Released: 06/2019

Period Impacted: October 2018 to present

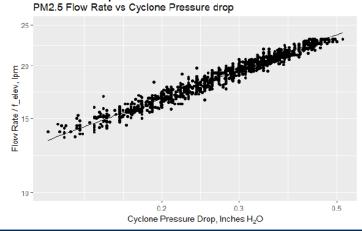
Universal Calibration Constants for Flow Rate Calculation

Released: 09/2019

Period Impacted: 2018 to present

Data Advisories

This is an IMPROVE data user community supported page meant to document interesting findings from the IMPROV database including data anomalies, potential problems, and new uses for the IMPROVE data. These advisories are not meant to be comprehensive or complete. In addition, unless explicitly stated the data advisories are not necessarily endorsed by the IMDDVICE stating on committee Mational Dark Sensing (1) But on the IMDDVICE stating on committee Mational Dark Sensing (1) But on the IMDDVICE stating on committee Mational Dark Sensing (1) But on the IMDDVICE stating on committee Mational Dark Sensing (1) But on the IMDVICE stating on committee Mational Dark Sensing (1) But on the IMDVICE stating on committee Mational Dark Sensing (1) But on the IMDVICE state of the IMDVICE

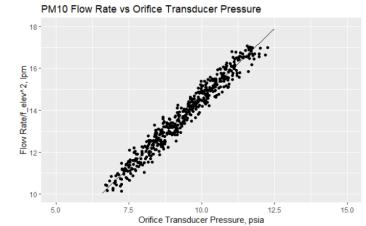

Universal calibration constants for flow rate calculation	Submitted by: C. Wallis	On: 09/2019	Doc #: da004
Sites: All, following installation of Version 4 controllers	Time Period: 2018-present	Module/Species	s: All
Change in analytical protocol for XRF analysis	Submitted by: K. Trzepla	On: 06/2019	Doc #: da004
Stee: All	Time Period: 10/2018-present	Module/Species elements	: A/Al/
Method change for calibrating flow rate transfer standards	Submitted by: C. Wallis	On: 05/2019	Doc #: da004
Sites: All	Time Period: 1/2015-present	Module/Species	EAT
Changes to HIPS System	Submitted by: K.Trzepla & J. Giacomo	On: 04/2019	Doc #: da004
Sites: All	Time Period: 1/2017-present	Module/Species	: A/Fabs

Field Updates

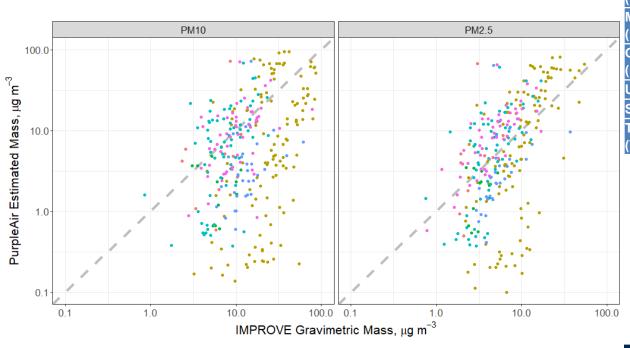
New Universal Flow Rate Constants (Data Advisory)

- Digital pressure transducers are consistent and provide absolute measures of pressure in inches of H₂O
- Data from 2018 and 2019 at 128 sites are combined to derive universal flow calibration constants for PM_{2.5} and PM₁₀ samplers across the network
 - $PM_{2.5}$ Module $Log_{10}(Flow) = A + B \times Log_{10} (\Delta P_{cyc})$ where A = intercept constant = 1.489

B = slope constant = 0.3797



• PM_{10} Module


$$Flow = C + D \times P_{ori}$$

where C = intercept constant = 1.320

$$D = slope constant = 1.325$$

Purple Air Sensors

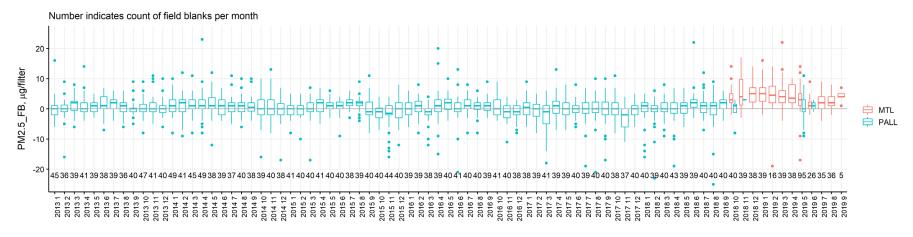
	Data	
Location	Output	Installed
Fresno, CO (FRES1)	Public	05/14/2018
Meadview, AZ (MEAD1)*	SD Card	06/04/2018
Grand Canyon, AZ (GRCA2)	SD Card	06/05/2018
Mount Baldy, AZ (BALD1*)	SD Card	06/07/2018
Wichita Mountain, OK		
(WIMO1)	Public	07/26/2018
Hercules-Glades, MO		
(HEGL1)	Public	07/29/2018
Mammoth Cave, KY		
(MACA1)	Controller	05/07/2019
Great Smoky Mountains, TN		
(GRSM1)	Controller	05/10/2019
University of CA – Davis	SD Card	05/22/2019
Shenandoah, VA (SHEN1)	Controller	7/26/2019
Theodore Rosevelt, ND		
(THRO1)	Controller	8/22/2019

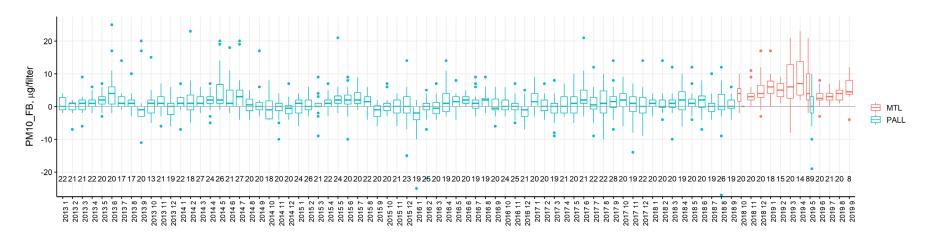
New Pump Durability Testing

- Exploring new brushless DC pumps for IMPROVE sampler
 - Variable speed allows for flow control
 - Control software would need to be developed
 - Existing pumps were discontinued
 - Cheaper than existing pumps
- First step is to test durability
 - Existing pumps last 4+ years in field running every 3 days
 - Testing DC pumps in Denali and Davis by running 6 hours on and 2 hours off - will mimic 3 years of service in ~1 year.

Laboratory Updates

MTL Automated Weighing Chamber


Operational starting October 5, 2018

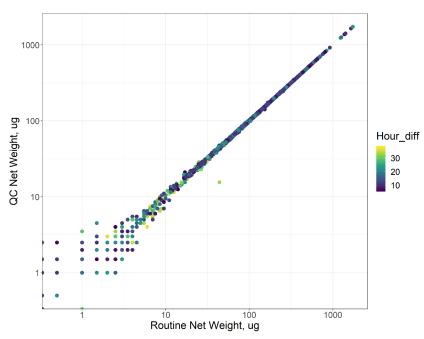

- Relative humidity set to 39% (± 0.4% with door closed)
- Temperature set to 21.5 °C
- 2-4 hour equilibration time (operationally limited)

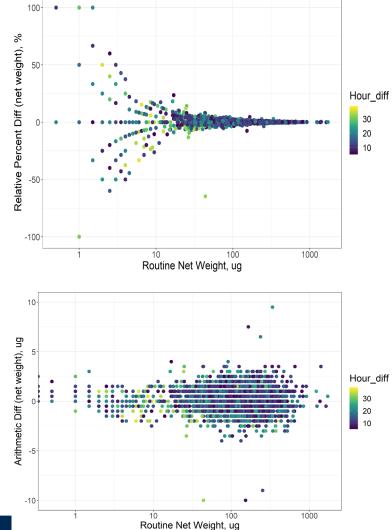
Long term testing ongoing:

- Longer equilibration time
- Manual balance vs. chamber system
- Mass gain on blanks

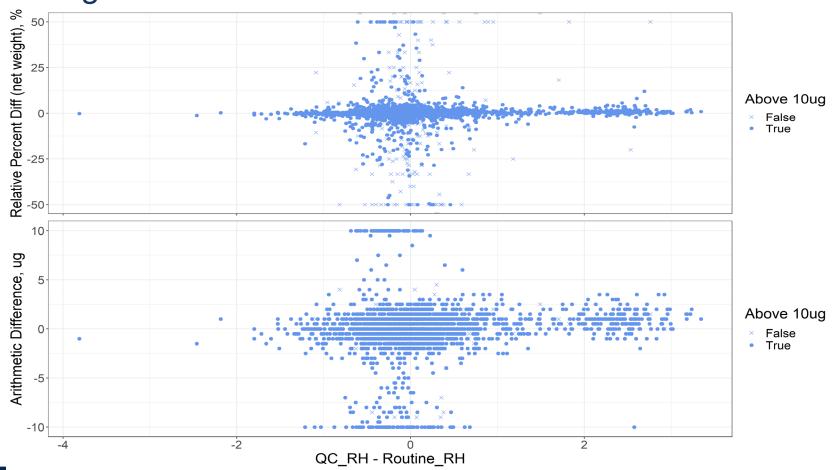
MTL Filter Blank Mass Gain

15

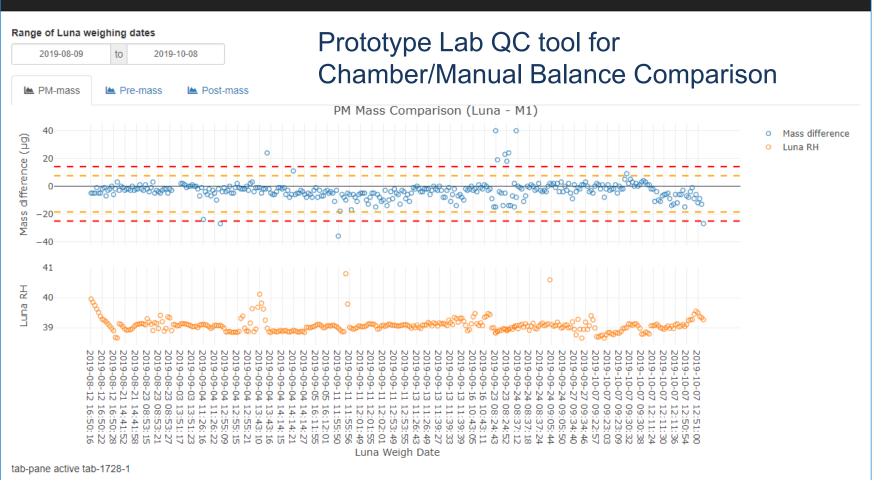

CUAVI


Long-term Testing: Longer Equilibration Time

- Routine equilibration time is 2-4 hours (operationally constrained)
- Repeated weight measurements with longer equilibration time (4 40+ hours) during the weekends since 4/20/2019
- A total of 5428 pairs of routine and repeated QC measurements; 2023 pre-weight pairs & 3405 post-weight pairs
- Relative difference (RPD) = (QC routine)/routine * 100
- Arithmetic difference = QC routine mass


21 UCDAN

No dependence of differences on equilibration time difference


Weight Difference versus RH Difference

Long-term Testing: Manual vs Chamber Comparison

- Pre- and post-weighing a small number of filters on both chamber and manual balances since July 2019.
- Collected 653 pre-mass pairs and 331 post-mass pairs as of 10/7/2019.
- Median "chamber manual" difference is 6 μg for post-mass, 4 μg for pre-mass, and 3 μg difference in net mass for network samples.

24

New XRF Analysis Protocol (Data Advisory)

- KBr secondary target (for better As detection) is eliminated
- Longer irradiation time for some of the other targets to improve sensitivity
- New protocol applied to Oct. 2018 sample analysis onward

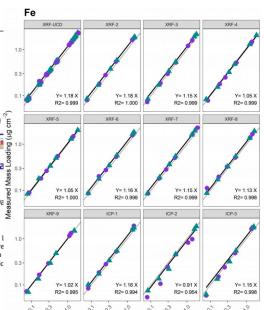
Sample Element	Secondary Target	Exposure (sec), Old	Exposure (sec), New
Na – K	CaF ₂	600	600
Ca – Cr	Fe	400	400
Mn – Zn	Ge	300	400
As	KBr	300	
Se – Br	SrF ₂	300	
As-Br	SrF ₂		400
Rb – Sr, Pb	Mo	300	400
Zr	A1 ₂ O ₃	200	200

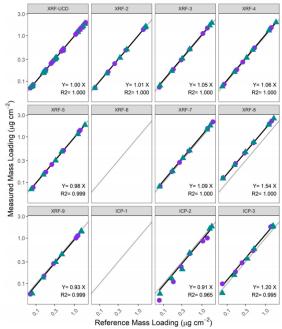
XRF Calibration Reference Materials Publications

Contents lists available at ScienceDirect

Atmospheric Environment

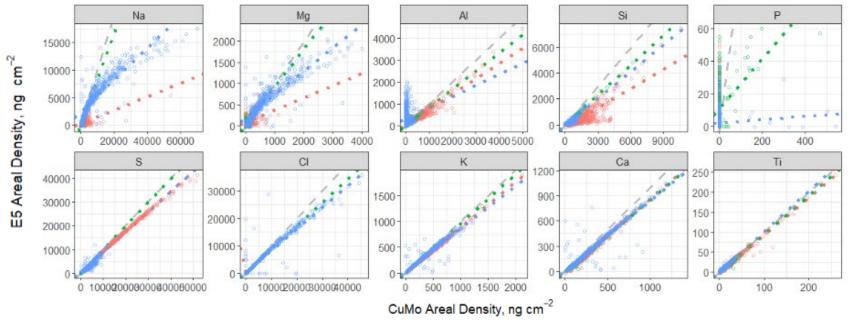
journal homepage: www.elsevier.com/locate/atmosenv


Generation of multi-element reference materials on PTFE filters mimicking ambient aerosol characteristics

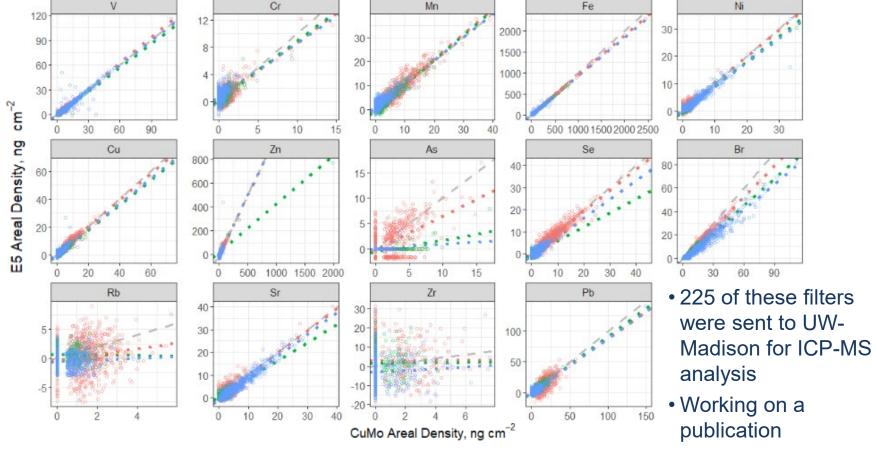

Sinan Yatkin*, Krystyna Trzepla, Warren H. White, Nicole Pauly Hyslop

Air Quality Research Center, University of California, Davis, CA, 95616, United States

AEROSOL SCIENCE AND TECHNOLOGY 2019, VOL. 53, NO. 7, 771-782 https://doi.org/10.1080/02786826.2019.1606413


An inter-laboratory evaluation of new multi-element reference materia atmospheric particulate matter measurements

Nicole Pauly Hyslop^a, Krystyna Trzepla^a, Sinan Yatkin^a, Warren H. White^a, Travis Ancelet^b, Perry Da Owen Butler^c, Michel Gerboles^d, Steven Kohl^e, Andrea McWilliams^f, Laura Saucedo^g, Marco Van Der Haarh, and Armand Jonkersh


^aAir Quality Research Center, University of California, Davis, California, USA; ^bInstitute of Geological and Nuclear Sciences, l New Zealand; 'Health and Safety Laboratory, Buxton, United Kingdom; dEuropean Commission, Joint Research Centre, Dire Energy, Transport and Climate, Ispra, Italy: Desert Research Institute, Reno, Nevada: Research Triangle Institute, Research Park, North Carolina, USA: 9South Coast Air Quality Management District, Diamond Bar, California, USA: Malvern Panalytic The Netherlands

XRF Reanalysis on Archived Filters

 Archived filters from Great Smoky Mountains (GRSM1), Mount Rainier (MORA1), and Point Reyes (PORE1) were reanalyzed on the Panalytical Epsilon5 XRF and compared to results from the legacy Cu-Mo XRF

XRF Reanalysis on Archived Filters (Continued)

