CSN/IMPROVE NHx Study in the Southeastern United States

Bret Schichtel and Joann Rice
Chris Rogers, John Walker, Kevin Mishoe, Melissa Puchalski
Rich Scheffe, Marcus Stewart, Kathy Barry,
Field crew at Duke Forest and Gainesville
Recall the IMPROVE NHx Study

- Phosphoric acid impregnated cellulose backup filter to collect NH$_3$ and volatilized NH$_3$ from nylasorb filters
- Acid impregnated cellulose front filter to collect NH$_3$ + NH$_4^+$ and other gases e.g. methylamine

The IMPROVE Sampler utilizes a denuder to remove HNO$_3$, a cyclone to limit sample collection to PM2.5 aerosol, and a filter-pack.

- IMPROVE samplers collects 24-h samples
- Filters analyzed for NH$_4^+$ and methylamine by ion chromatography
NHx IMPROVE Measurement Evaluation

• Comparison with URG reference method at CSU
 • Good agreement between IMPROVE NHx and URG filter + denuder
 • Good agreement between IMPROVE nylon filter NH$_4^+$ and URG-NH$_4^+$
 • IMPROVE NH$_4^+$ low due to NO$_3$-NH$_4^+$ loss

• Collocated NHx samplers
 • Good measurement precision

Chen et al. (2014)
IMPROVE NHx Pilot Study

• Monthly NH$_x$ average concentrations (μg/m3) measured from spring 2011 to summer 2012

• Note, that at mostly western low RH sites

Chen et al. (2014)
Southeastern US Study Design, May-Nov 2017

- Similar set up at Gainesville
- Gainesville is very humid

URG denuder/filter pack
- Separates NH$_3$ and NH$_4^+$
 - Acid coated denuder (NH$_3$)
 - Nylon filter (NH$_4^+$)
 - Backup denuder (volatile NH$_3$)
- Duplicates
- PM$_{2.5}$ inlet @ 10 Lpm

CSN
- One module collecting NH$_4^+$ on nylon filter
- 2nd module collecting total NHx on acid impregnated cellulose filter
- PM$_{2.5}$ inlet at 6.7 Lpm

IMPROVE
- Acid impregnated cellulose filter to capture total NHx
- PM$_{2.5}$ inlet @ 22.8 Lpm
Results

- High correlation between ADS and IMPROVE sampler
 - Similar performance to Chen at al 2014
- Moderate correlation between ADS and CSN
- CSN measures less NHx than ADS at higher concentrations

- Moderate correlation between methods
- Low variability
- Larger bias at higher concentrations for CSN
Results

- Median concentrations are similar across methods
- CSN and IMPROVE measure less NHx than ADS
What is causing disagreement between methods?
ADS performance?

- ADS results showed a large fraction of NH$_4^+$ on the backup acid denuder (downstream of nylon filter).
 - This could be caused by
 - NH$_3$ breakthrough on the primary acid denuder
 - NH$_4^+$ volatilization from the nylon filter
 - Three 24 hour samples were collected at the end of the NHx study with additional denuders to test breakthrough on both the primary and backup acid denuder.
 - These tests indicated breakthrough on the primary denuder.
 - This motivated a follow up study in RTP to test the collection efficiency of the acid denuder.
• RTP study showed good NH$_3$ collection efficiency.
• NH$_4^+$ being lost from nylon filter but captured as NH$_3$ in backup denuder
• Issue with nylon filter retaining NH$_4^+$ but total NH$_x$ captured with backup acid denuder.
• Anion analysis suggests filter issue related to chemistry not particle collection efficiency.
Supplemental Results

- Anion analysis
 - Wood analyzed extracts for NO3, SO4 from CSN and ADS nylon filters
 - NH4/SO4 ratio

<table>
<thead>
<tr>
<th></th>
<th>Duke Forest</th>
<th>Gainesville</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASTNET</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>ADS</td>
<td>0.41</td>
<td>0.40</td>
</tr>
<tr>
<td>CSN</td>
<td>0.16</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Comparison with CASTNET – Duke Forest

- Evidence of Loss of NH4 associated with sulfate from nylon filters

CASTNET
CSN
ADS

CASTNET uses Teflon for NH4, SO4
CSN using nylon filter for NH4, SO4
ADS Nylon NH4 + backup denuder NH4

Good agreement between methods for SO4
Nitrate concentrations were very low
Nylon and Teflon filters retain SO4, but nylon lost NH4
CSN performance?

• Why does CSN measure less NH$_x$ than ADS and IMPROVE?
• Is the CSN inlet scrubbing NH$_3$? - No

• Ran the CSN sampler with and without the cyclone/impactor
 • No change in NH$_4$ concentrations
CSN performance?

- NHx bias increases with concentration at both sites.
- Negative bias may become larger as NHx becomes dominated by aerosol NH$_4^+$ fraction.
- Bias may be more related to NH$_4^+$ than NH$_3$?
- **IMPROVE**
 - Type 40 cellulose filter
 - 98% retention of 8 um particles.
- **CSN**
 - Type 41 cellulose filter
 - 98% retention of 20 um particles.
- CSN cellulose filter collecting fewer NH$_4^+$ particles?
Recommendations and Next steps

- Is NHx sampling suitable for deployment in IMPROVE and or CSN networks?
 - Not in humid areas
 - Need to resolve CSN low bias
 - Need to develop filter handling protocols and procedures suitable for deployment in routine networks
- Interpret Gainesville/Duke Forest data in the context of meteorology (RH, dew, temperature)
- Run a comparison of the cellulose filters at Duke Forest or RTP to test particle collection efficiency
- Measure NHx at co-located CSN/IMPROVE sites to further test the method and develop protocols
- Would be interesting to understand how sulfate bound NH4 is lost from nylon filters
Results

- Very low concentrations of NHx at both sites
Next steps

• Further analysis ADS and CSN nylon filter extracts for anion concentrations (anion balance for NH_4^+)
• Analysis of NHx method differences versus meteorological variables
• Final summary report (Nov, 2018)
• Revisit other CASTNET studies to evaluate ADS versus CASTNET NH_4^+ aerosol
• Comparisons of other NHx methods at Duke Forest
 • CASTNET/AMoN total NHx
 • MARGA (online IC)
 • Nitrotrain (chemiluminescence)