### IMPROVE TOR Analysis for Carbon – Assessment of Transition to a New Analyzer

Summary of DRI's assessment report prepared by Marc Pitchford - 1/24/05

# Motivation for replacing the IMPROVE carbon analyzer

- Current systems (DRI/OGC analyzers) built in the mid-1980s are antiquated
  - frequently breaking
  - some parts are no longer available
  - only 4 of 5 systems are currently operational
  - already affecting analysis schedules
- Proposed replacement system (Model 2001 carbon analyzers) are more capable
  - Generates both reflectance and transmission data
  - Has better precision because of better controlled sample temperatures & lower O<sub>2</sub> contamination of the Helium atmosphere

# Desired characteristics of a replacement carbon analyzer

- Data comparable to the current IMPROVE system for total carbon (TC) and the organic carbon (OC) and elemental carbon (EC) splits
  - Critical because OC & EC are required to calculate light extinction for the regional haze rule
- As good or better analytical precision as the current system for OC, & EC
  - Important since OC & EC data have less precision than other components, though much of this is due to the uncertainty in field blank values used to adjust the OC data
- Data comparable to the current system for OC and EC subfraction data (OC1, OC2, OC3, OC4, OP, EC1, EC2, & EC3)
  - Desirable because subfraction data have been used in some receptor modeling source attribution

## How does Thermal Optical Reflectance Analysis Work?

- Carbon released from a sample that is raised to specific temperatures in a helium atmosphere is measured and labeled organic carbon
  - The 4 OC subfractions correspond to the carbon measured at each of the 4 temperatures used during the OC phase of the analysis
- Then oxygen is added and the temperature is raised so that additional sample carbon is oxidized, released and measured as elemental carbon
  - The 3 EC subfractions correspond to the carbon measured at each of the 3 temperatures used during the EC phase of the analysis
- Changes in optical reflectance of the filter (how dark it looks) during the analysis process are used to adjust biases due to
  - charring of OC that could be mistaken for EC, or
  - oxidation of EC in the helium atmosphere that could be mistaken for OC



# Initial Comparability of the Current and New TOR Analyzers

- Model 2001 system was programmed to operate the same as the current system (i.e. same temperatures, gas atmosphere, timing, etc.)
- TC, OC,& EC data were comparable for a wide range of IMPROVE and other samples (~240 samples),
- But the subfraction where not comparable though they were correlated
- DRI initiated extensive assessments (~10 months) to understand the differences between the systems and to make adjustments where possible

## **DRI** Assessments/Results

- Developed a method to calibrate analyzers' thermocouple temperature to actual sample temperature – using temperature indicator liquids on the filter punches
  - DRI/OGC samples are 10°C 50°C hotter than thermocouple
  - Model 2001 samples are 5°C 20°C hotter than thermocouple
  - Model 2001 has much better temperature precision (between separate analyzers) than the DRI/OGC
  - Model 2001 has much faster heating response time than the DRI/OGC

## DRI Assessments/Results (continued)

- Measured trace O<sub>2</sub> concentrations diffused into the helium atmosphere in the sample oven
  - O<sub>2</sub> concentration in ultra-pure helium gas used is <1ppmv</li>
  - DRI/OGC O<sub>2</sub> 150 to 320ppmv with an average among analyzers of ~250ppmv
  - Model 2001  $O_2$  ~25ppmv

# DRI Assessments/Results (continued)

- Measured the sensitivity of OC and EC and subfractions to sample temperature and O<sub>2</sub> levels in the helium in the ranges seen in the DRI/OGC analyzers using Fresno samples
  - OC & EC are insensitive to temperature or  $O_2$
  - OC1, OC2, OC3, OP, & EC2 are temperature dependent
  - -OC3, OP, and EC1 are O<sub>2</sub> level dependent

# Impact of temperature and atmospheric environment (O2) on carbon fractions (OC1 and OC2)



# Impact of temperature and atmospheric environment (O2) on carbon fractions (OC3 and OC4)



# Impact of temperature and atmospheric environment (O2) on carbon fractions (OP and EC1)



# Impact of temperature and atmospheric environment (O2) on carbon fractions (EC2 and ECR)



## Alternate Model 2001 Operational Protocols

- IMPROVE Protocol uses the nominal temperatures for the DRI/OGC analyzer
  - Use linear adjustment to relate new carbon subfraction measurements to historic data
- IMPROVE-A Protocol uses the same sample temperatures (rounded to nearest 10°C) as in the DRI/OGC analyzer
  - Attempt to better reproduce carbon subfraction of "typical" DRI/OGC without having to add O<sub>2</sub>
- IMPROVE(250) 250ppmv O<sub>2</sub> in the helium during the OC analysis phase and temperatures optimize for best agreement with DRI/OGC on Fresno samples
  - Attempt to better match the "typical" DRI/OGC carbon subfractions

### **Temperature Protocols**

|     | IMPROVE (°C) | IMPROVE-A (°C) | IMPROVE (250) (°C) |
|-----|--------------|----------------|--------------------|
| OC1 | 120          | 140            | 142                |
| OC2 | 250          | 280            | 238                |
| OC3 | 450          | 480            | 468                |
| OC4 | 550          | 580            | 579                |
| EC1 | 550          | 580            | 591                |
| EC2 | 700          | 740            | 738                |
| EC3 | 800          | 840            | 841                |

### Assessment of Alternate Model 2001 Protocols

- DRI/OGC data for IMPROVE samples are compared to Model 2001 IMPROVE (n=243) and IMPROVE-A (n=160) protocols
- DRI/OGC data for IMPROVE samples (n=110) are compared to Model 2001 IMPROVE(250) protocol
- DRI/OGC data are the historic analyses, <u>not</u> recent re-analyses; the Model 2001 analyses are done on the archived portions of the quartz filters

#### Summary of DRI/OGC and DRI Model 2001

| Carbon Fraction  | DRI/OGC (Y) to DRI Model 2001<br>with IMPROVE (Y), n=243 |            | DRI/OGC (Y) to DRI Model 2001<br>with IMPROVE A (Y), n=160 |             |           | DRI/OGC (Y) to DRI Model 2001 with IMPROVE(250) (Y), $110$ |                  |                     |      |
|------------------|----------------------------------------------------------|------------|------------------------------------------------------------|-------------|-----------|------------------------------------------------------------|------------------|---------------------|------|
|                  | slope Y/X R                                              |            | R                                                          | slope Y/X R |           |                                                            | slope            | <u>n=110</u><br>Y/X | R    |
| Total Carbon     | 1.05±0.005                                               | 1.03±0.10  | 0.99                                                       | 1.02±0.007  | 1.00±0.13 | 0.99                                                       | 0.98±0.00        | 0.96±0.12           | 1.00 |
| Organic Carbon   | 1.08±0.006                                               | 1.05±0.10  | 0.98                                                       | 1.01±0.008  | 1.00±0.13 | 0.99                                                       | 0.92±0.01        | 0.93±0.13           | 1.00 |
| Elemental Carbon | 0.89±0.009                                               | 0.96±0.28  | 0.97                                                       | 1.02±0.010  | 1.08±0.32 | 0.98                                                       | 1.38±0.05        | 1.60±1.69           | 0.90 |
| OC1              | 1.83±0.09                                                | 4.85±16.60 | 0.45                                                       | 1.12±0.05   | 1.89±2.81 | 0.80                                                       | 0.85±0.03        | 1.22±0.89           | 0.95 |
| OC2              | 0.85±0.01                                                | 0.85±0.14  | 0.94                                                       | 0.74±0.01   | 0.73±0.14 | 0.97                                                       | 1.21±0.02        | 0.92±0.21           | 0.98 |
| 0C3              | 1.55±0.02                                                | 1.48±0.30  | 0.94                                                       | 1.12±0.02   | 1.19±0.29 | 0.93                                                       | 0.74±0.02        | 0.87±0.19           | 0.97 |
| OC4              | 1.26±0.02                                                | 1.30±0.31  | 0.89                                                       | 1.09±0.02   | 1.16±0.86 | 0.96                                                       | <u>0.87±0.02</u> | 1.13±0.37           | 0.95 |
| OP               | 0.37±0.01                                                | 0.44±0.21  | 0.49                                                       | 0.78±0.03   | 0.86±0.35 | 0.76                                                       | 1.03±0.18        | 3.07±9.35           | 0.29 |
| EC1              | 0.59±0.01                                                | 0.68±0.21  | 0.88                                                       | 0.95±0.02   | 0.95±0.27 | 0.92                                                       | 1.45±0.10        | 1.29±1.16           | 0.76 |
| EC2              | 0.57±0.01                                                | 0.63±0.23  | 0.72                                                       | 0.84±0.02   | 0.96±0.35 | 0.80                                                       | 1.24±0.04        | 1.28±0.47           | 0.79 |
| EC3              | 0.30±0.02                                                | 0.88±4.86  | 0.45                                                       | 0.89±0.11   | 1.97±2.76 | 0.43                                                       | 7.78±1.54        | 7.33±9.64           | 0.33 |

- IMPROVE-A is more comparable to DRI/OGC for all carbon components except for OC2 which is moderately less comparable
- IMPROVE(250) is not comparable to DRI/OGC for EC and has a poor correlation for OP & EC3

#### Comparisons DRI/OGC to IMPROVE(250) for OC & EC



Good correlation at low concentrations degrades at higher concentrations

#### Comparisons of TC from DRI/OGC with DRI Model 2001 IMPROVE and IMPROVE\_A



#### Comparisons of OC from DRI/OGC with DRI Model 2001 IMPROVE and IMPROVE\_A



#### Comparisons of EC from DRI/OGC with DRI Model 2001 IMPROVE and IMPROVE\_A



#### Comparisons of OC1 from DRI/OGC with DRI Model 2001 IMPROVE and IMPROVE\_A



#### Comparisons of OC2 from DRI/OGC with DRI Model 2001 IMPROVE and IMPROVE\_A



#### Comparisons of OC3 from DRI/OGC with DRI Model 2001 IMPROVE and IMPROVE\_A



#### Comparisons of OC4 from DRI/OGC with DRI Model 2001 IMPROVE and IMPROVE\_A



#### Comparisons of OPC from DRI/OGC with DRI Model 2001 IMPROVE and IMPROVE\_A



#### Comparisons of EC1 from DRI/OGC with DRI Model 2001 IMPROVE and IMPROVE\_A



#### Comparisons of EC2 from DRI/OGC with DRI Model 2001 IMPROVE and IMPROVE\_A



#### Comparisons of EC3 from DRI/OGC with DRI Model 2001 IMPROVE and IMPROVE\_A



# Summary/Recommendations

- Model 2001 analyzer using IMPROVE(250) protocol does not reproduce EC data from the currently used DRI/OGC very well for high carbon concentration IMPROVE samples
- IMPROVE & IMPROVE-A produces comparable OC & EC data to the DRI/OGC analyzer data
- IMPROVE-A protocol produces more comparable carbon subfraction data to the DRI/OGC analyzer data than the IMPROVE protocol
- Temperature profiles for all Thermal/Optical Carbon (TOC) analyzers should to be calibrated to actual sample temperatures to aid in understanding their operation
- O<sub>2</sub> levels in the helium of the organic phase of the TOC analyzers should be periodically monitored & kept low

### **IMPROVE** Carbon Analysis Decision

- IMPROVE Steering Committee will
  - review the information,
  - discuss it as needed via emails & conference calls and
  - make the decision concerning the use of IMPROVE or IMPROVE-A, or "back to the drawing board"
- If the decision to use IMPROVE or IMPROVE-A is made by the end of February, all samples collected during calendar year 2005 can be analyzed by the same new protocol
- A "back to the drawing board" decision could affect carbon analysis backlogs and slow data turn-around

### Additional Assessment Results Included in the DRI Report

- The OP values that are sometimes negative (<5% of IMPROVE samples) should not be set to zero, but should be applied as a negative correction to the OC (increasing the EC value)
- TOR produces more comparable OC & EC results among the different temperature profiles than TOT (specifically useful for relating IMPROVE to STN OC & EC data)





18 Hong Kong Samples

# Comparison of STN\_TOT and STN\_TOR with IMPROVE\_TOR



#### Comparison of STN\_TOT and STN\_TOR with IMPROVE\_TOR (cont'd)

