Spatial and Seasonal Patterns and Temporal Variability of Haze and its Constituents in the United States
Report IV

Principal Author:
Linsey J. DeBell

1Cooperative Institute for Research in the Atmosphere
Colorado State University
Fort Collins, CO 80523-1375

Contributors:
Kristi A. Gebhart
Jenny L. Hand
William C. Malm
Marc L. Pitchford
Bret A. Schichtel
Warren H. White

2National Park Service
CSU/CIRA
Fort Collins, CO 80523-1375

3National Oceanic and Atmospheric Administration
Desert Research Institute
Las Vegas, NV 89119-7363

4Crocker Nuclear Laboratory
University of California
Davis, CA 95616-8569

Disclaimer
The assumptions, findings, conclusions, judgments, and views presented herein are those of the authors and should not be interpreted as necessarily representing the National Park Service or National Oceanic and Atmospheric Administration policies.
TABLE OF CONTENTS

Overview and Summary ..S-1
S.1 Optical and Aerosol Data ..S-2
S.2 Spatial Trends in Aerosol Concentration and Extinction ..S-6
S.3 Spatial Variability Of Average Monthly Patterns In Fine Aerosol Species Concentrations
And Aerosol Extinction Coefficients..S-14
S.4 Temporal Trends in Fine Aerosol Species Concentrations and Aerosol ExtinctionS-18
S.5 IMPROVE Data Quality Assurance ..S-19
S.6 Special Studies Associated with the IMPROVE program ...S-19
References..S-21

Chapter 1: IMPROVE Network – Purpose, Design, and History... 1
1.1 Objectives of Visibility Monitoring under the IMPROVE Program.................................. 2
1.2 Overview of the IMPROVE Monitoring Network ... 4
1.2.1 Current and Historical Sampler Siting ... 4
1.2.2 Aerosol Sampling and Analysis ... 14
1.2.3 Optical Sampling and Analysis .. 20
1.3 Protocol and Equipment Changes .. 24
1.3.1 Analytical Changes .. 25
1.3.1.1. Transition from PIXE to XRF .. 25
1.3.1.2. Alternate Nylon Filter Extraction Procedure .. 25
1.3.2 Sampling Equipment Changes ... 26
1.3.2.1. Transition from Version I to Version II IMPROVE Sampler 26
1.3.2.2. Denuder Coating Modified ... 26
1.3.2.3. Changes in Nylon Filter Size .. 26
1.3.2.4. Changes in Nylon Filter Manufacturer ... 26
1.3.3 Data Processing Changes ... 27
1.3.3.1. Change in the Reporting of Gravimetric Measurements 27
1.3.3.2. Change in Batch Size Used in Data Processing Routines at CNL.................... 27
1.3.3.3. Change in Flow Rate Validation Flag Definitions.. 27
1.3.3.4. Change in Flow Rate Calculations.. 27
1.3.3.5. Spectral Corrections to S and Al Data from the XRF Cu Anode System 28
1.3.3.6. Change in the Reporting of Organic Pyrolyzed Carbon (OP) Concentrations...... 28
1.4 The Comparison of Concentrations from Collocated IMPROVE and STN Monitoring
Sites ... 29
References... 31

Chapter 2: Spatial Distributions of Reconstructed Mass and Mass Budgets and Reconstructed
Light Extinction and Light-Extinction Budgets .. 33
2.1 Estimation of Aerosol Species Mass ... 33
2.2 Reconstructing Light Extinction from Aerosol Measurements 36
2.2.1 Extinction Model.. 37
4.4 Organic and Elemental Carbon Long-Term Trends and Spatial Patterns in the Rural United States ... 129
 4.4.1 Introduction .. 129
 4.4.2 EC and OC Long-Term Trends .. 130
4.5 VIEWS Annual Summary Trends Tools .. 133
References ... 135
Chapter 5: IMPROVE Data Quality Assurance ... 137
 5.1 Overview of the IMPROVE Network’s Quality Assurance System and Data Validation Procedures Conducted by CIRA .. 137
 5.1.1 Sampling and Analysis ... 138
 5.1.2 Overview of the IMPROVE QA System ... 138
 5.1.2.1 Roles and Responsibilities ... 138
 5.1.2.2 Data Quality Objectives .. 139
 5.1.2.2.1 Precision, Accuracy, and MQL/MDL 139
 5.1.2.2.2 Completeness .. 139
 5.1.2.2.3 Representativeness ... 139
 5.1.2.2.4 Comparability .. 140
 5.1.2.3 Documentation ... 140
 5.1.3 Data Validation ... 140
 5.1.3.1 Data Integrity Tests Performed at CIRA 141
 5.1.3.2 Spatial and Temporal Comparability Checks Performed at CIRA 142
 5.1.3.2.1 Mass ... 142
 5.1.3.2.2 Sulfate ... 144
 5.1.3.2.3 Soil Elements ... 149
 5.1.3.2.4 Carbon ... 154
 5.1.3.2.5 Nitrate ... 156
 5.1.3.2.6 Cut Point ... 157
 5.1.4 Examples of Data Quality Issues Discovered by CIRA in the 2004 Data 158
 5.1.5 Glossary of Terms ... 164
 5.1.6 Data Acquisition, Quality Control, and Data Management 165
 5.1.6.1 A.1 Sample Handling ... 165
 5.1.6.2 A.2 Sample Analysis ... 166
 5.1.7 Data Validation Activities at CNL .. 168
 5.1.7.1 Flow Rate Audits and Analysis Performed by CNL 168
 5.1.7.2 Accuracy, Uncertainty, and MQL Checks on QC Samples Performed at CNL ... 169
 5.1.7.3 Internal Consistency Checks Performed at CNL 170
 5.1.7.3.1 Iron .. 170
 5.1.7.3.2 Mass .. 170
 5.1.7.3.3 Sulfate ... 170
 5.1.7.3.4 Carbon .. 170
 5.1.8 Outcomes from a Historical Review of IMPROVE Data 171
LIST OF FIGURES

Figure S.1. The locations current and discontinued IMPROVE and IMPROVE protocol monitoring sites as of December 2004. The IMPROVE regions used for grouping the sites in some analyses in this report are indicated by green shading and bold text. Urban sites included in the IMPROVE network for quality assurance purposes are identified by stars. S-5

Figure S.2. Five-year average (2000–2004) deciview (DV) using only IMPROVE data. S-8

Figure S.3. Five-year average (2000–2004) reconstructed particulate light extinction using only IMPROVE data. S-9

Figure S.4. Five-year average (2000–2004) sulfate light scattering using only IMPROVE data. S-9

Figure S.5. Five-year average (2000–2004) sulfate light scattering using IMPROVE and STN data. S-9

Figure S.6. Five-year average (2000–2004) organic carbon light scattering using only IMPROVE data. S-10

Figure S.7. Five-year average (2000–2004) organic carbon light scattering using IMPROVE and STN data. S-10

Figure S.8. Five-year average (2000–2004) ammonium nitrate light scattering using only IMPROVE data. S-11

Figure S.9. Five-year average (2000–2004) ammonium nitrate light scattering using IMPROVE and STN data. S-11

Figure S.10. Five-year average (2000–2004) fine soil light scattering using only IMPROVE data. S-12

Figure S.11. Five-year average (2000–2004) fine soil light scattering using IMPROVE and STN data. Note comparisons of collocated data indicate the STN fine soil concentrations and light scattering were typically 30% smaller than from the IMPROVE monitors. S-13

Figure S.12. Five-year average (2000–2004) coarse mass light scattering using only IMPROVE data. S-13

Figure S.13. Monthly particulate contributions to reconstructed b_{ext} (Mm^{-1}) for regions in the eastern United States using IMPROVE data (top) and STN data (bottom). Note, STN does not measure coarse mass. S-15

Figure S.14. Monthly particulate contributions to reconstructed b_{ext} (Mm^{-1}) for regions in the southwestern United States using IMPROVE data (top) and STN data (bottom). Note, STN does not measure coarse mass. S-16

Figure S.15. Monthly particulate contributions to reconstructed b_{ext} (Mm^{-1}) for regions in the northwestern United States using IMPROVE data (top) and STN data (bottom). Note, STN does not measure coarse mass. S-17

Figure 1.1. All Class I areas of the contiguous United States are identified on the map. The color coding identifies the managing agency of each Class I area. 3
the sites in some analyses in this report are indicated by green shading and italicized text. Urban
sites included in the IMPROVE network for quality assurance purposes are identified by stars. 5

Figure 1.3. Schematic view of the IMPROVE sampler showing the four modules with separate
inlets and pumps. The substrates with analyses performed for each module are also shown. 15

Figure 1.4. Schematic of a new version of the IMPROVE sampler PM$_{2.5}$ module. 17

Figure 2.1. RH factors (f_T (RH)) derived from Tang’s ammonium sulfate growth curves
smoothed between the crystallization and deliquescence points. 39

Figure 2.2. Isopleth maps of annual ammonium sulfate concentrations in panels a and b and
percent contributions to reconstructed fine mass in panels c and d. Panels a–d include all sites
from the IMPROVE network that met the prescribed completeness criteria including the urban
sites from 2000–2004. Panels b and d also include all sites from the STN network that met the
prescribed completeness criteria. 52

Figure 2.3. Isopleth maps of annual total carbon concentrations. Panels a and b include all sites
from the IMPROVE network that met the prescribed completeness criteria including the urban
sites for 2000–2004. Panel b also includes all sites from the STN network that met the
prescribed completeness criteria. 53

Figure 2.4. Isopleth maps of annual organic carbon concentrations in panels a and b and percent
contributions to reconstructed fine mass in panels c and d. Panels a–d include all sites from the
IMPROVE network that met the prescribed completeness criteria including the urban sites for
2000–2004. Panels b and d also include all sites from the STN network that met the
prescribed completeness criteria. 55

Figure 2.5. Isopleth maps of annual light-absorbing carbon concentrations in panels a and b and
percent contributions to reconstructed fine mass in panels c and d. Panels a–d include all sites from the
IMPROVE network that met the prescribed completeness criteria including the urban sites for
2000–2004. Panels b and d also include all sites from the STN network that met the
prescribed completeness criteria. 57

Figure 2.6. Isopleth maps of annual ammonium nitrate concentrations in panels a and b and percent
contributions to reconstructed fine mass in panels c and d. Panels a–d include all sites from the
IMPROVE network that met the prescribed completeness criteria including the urban sites for
2000–2004. Panels b and d also include all sites from the STN network that met the
prescribed completeness criteria. 59

Figure 2.7. Isopleth maps of annual soil concentrations in panels a and b and percent
contributions to reconstructed fine mass in panels c and d. Panels a–d include all sites from the
IMPROVE network that met the prescribed completeness criteria including the urban sites for
2000–2004. Panels b and d also include all sites from the STN network that met the
prescribed completeness criteria. 61

Figure 2.8. Isopleth maps of annual reconstructed fine mass concentrations. Panels a and b
include all sites from the IMPROVE network that met the prescribed completeness criteria
including the urban sites for 2000–2004. Panel b also includes all sites from the STN network
that met the prescribed completeness criteria. 62
Figure 2.9. Isopleth map of annual coarse mass concentrations; includes all sites from the IMPROVE network that met the prescribed completeness criteria including the urban sites for 2000–2004... 63

Figure 2.10. Isopleth maps of annual ammonium sulfate extinction coefficients in panels a and b and percent contribution to reconstructed particulate extinction in panel c. Panels a, b, and c include all sites from the IMPROVE network that met the prescribed completeness criteria including the urban sites for 2000–2004. Panel b also includes all sites from the STN network that met prescribed completeness criteria... 69

Figure 2.11. Isopleth maps of annual organic mass by carbon extinction coefficients in panels a and b and percent contribution to reconstructed particulate extinction in panel c. Panels a, b, and c include all sites from the IMPROVE network that met the prescribed completeness criteria including the urban sites for 2000–2004. Panel b also includes all sites from the STN network that met prescribed completeness criteria... 71

Figure 2.12. Isopleth maps of annual light-absorbing carbon extinction coefficients in panels a and b and percent contribution to reconstructed particulate extinction in panel c. Panels a, b, and c include all sites from the IMPROVE network that met the prescribed completeness criteria including the urban sites for 2000–2004. Panel b also includes all sites from the STN network that met prescribed completeness criteria... 73

Figure 2.13. Isopleth maps of annual ammonium nitrate extinction coefficients in panels a and b and percent contribution to reconstructed particulate extinction in panel c. Panels a, b, and c include all sites from the IMPROVE network that met the prescribed completeness criteria including the urban sites for 2000–2004. Panel b also includes all sites from the STN network that met prescribed completeness criteria... 75

Figure 2.14. Isopleth maps of annual fine soil extinction coefficients in panels a and b and percent contribution to reconstructed particulate extinction in panel c. Panels a, b, and c include all sites from the IMPROVE network that met the prescribed completeness criteria including the urban sites for 2000–2004. Panel b also includes all sites from the STN network that met prescribed completeness criteria... 77

Figure 2.15. Isopleth maps of annual coarse mass extinction coefficients in panel a and percent contribution to reconstructed particulate extinction in panel b. Panels a and b include all sites from the IMPROVE network that met the prescribed completeness criteria including the urban sites for 2000–2004... 78

Figure 2.16. Isopleth map of annual total reconstructed particulate extinction in panel a. Includes all sites from the IMPROVE network that met the prescribed completeness criteria including the urban sites for 2000–2004. Rayleigh scattering was not included.. 79

Figure 2.17. Isopleth map of annual visibility in deciviews in panel a. Includes all sites from the IMPROVE network that met the prescribed completeness criteria including the urban sites for 2000–2004... 79

Figure 3.1. Map of stacked bar charts of monthly mean concentrations (µg/m³) of fine aerosol species in the northwestern U.S. regions of the IMPROVE network... 93

Figure 3.2. Map of stacked bar charts of monthly mean concentrations (µg/m³) of fine aerosol species in the northwestern U.S. regions of the STN network... 94
Figure 3.3. Map of stacked bar charts of monthly mean concentrations (µg/m³) of fine aerosol species in the southwestern U.S. regions of the IMPROVE network

Figure 3.4. Map of stacked bar charts of monthly mean concentrations (µg/m³) of fine aerosol species in the southwestern U.S. regions of the STN network

Figure 3.5. Map of stacked bar charts of monthly mean concentrations (µg/m³) of fine aerosol species in the eastern U.S. regions of the IMPROVE network

Figure 3.6. Map of stacked bar charts of monthly mean concentrations (µg/m³) of fine aerosol species in the eastern U.S. regions of the STN network

Figure 3.7. Map of stacked bar charts of monthly percent contribution to reconstructed fine mass (%) of fine aerosol species in the northwestern U.S. regions of the IMPROVE network

Figure 3.8. Map of stacked bar charts of monthly percent contribution to reconstructed fine mass (%) of fine aerosol species in the northwestern U.S. regions of the STN network

Figure 3.9. Map of stacked bar charts of monthly percent contribution to reconstructed fine mass (%) of fine aerosol species in the southwestern U.S. regions of the IMPROVE network

Figure 3.10. Map of stacked bar charts of monthly percent contribution to reconstructed fine mass (%) of fine aerosol species in the southwestern U.S. regions of the STN network

Figure 3.11. Map of stacked bar charts of monthly percent contribution to reconstructed fine mass (%) of fine aerosol species in the eastern U.S. regions of the IMPROVE network

Figure 3.12. Map of stacked bar charts of monthly percent contribution to reconstructed fine mass (%) of fine aerosol species in the eastern U.S. regions of the STN network

Figure 3.13. Map showing stacked bar charts of monthly distributions of particulate extinction coefficients for the northwestern U.S. regions of the IMPROVE network. Starting from the base of the chart, ammonium sulfate, organics, light-absorbing carbon, ammonium nitrate, soil, and coarse mass are the order of presentation.

Figure 3.14. Map showing stacked bar charts of monthly distributions of fine particulate extinction coefficients (Mm⁻¹) for the northwestern U.S. regions of the STN network. Starting from the base of the chart, ammonium sulfate, organics, light-absorbing carbon, ammonium nitrate, soil, and coarse mass are the order of presentation. Coarse mass measurements were not available for STN and so are not included.

Figure 3.15. Map showing stacked bar charts of monthly distributions of particulate extinction coefficients (Mm⁻¹) for the southwestern U.S. regions of the IMPROVE network. Starting from the base of the chart, ammonium sulfate, organics, light-absorbing carbon, ammonium nitrate, soil, and coarse mass are the order of presentation.

Figure 3.16. Map showing stacked bar charts of monthly distributions of fine particulate extinction coefficients (Mm⁻¹) for the southwestern U.S. regions of the STN network. Starting from the base of the chart, ammonium sulfate, organics, light-absorbing carbon, ammonium nitrate, and soil are the order of presentation. Coarse mass measurements were not available for STN and so are not included.

Figure 3.17. Map showing stacked bar charts of monthly distributions of particulate extinction coefficients (Mm⁻¹) for the eastern U.S. regions of the IMPROVE network. Starting from the
base of the chart, ammonium sulfate, organics, light-absorbing carbon, ammonium nitrate, soil, and coarse mass are the order of presentation.

Figure 3.18. Map showing stacked bar charts of monthly distributions of fine particulate extinction coefficients (Mm⁻¹) for the eastern U.S. regions of the STN network. Starting from the base of the chart, ammonium sulfate, organics, light-absorbing carbon, ammonium nitrate, and soil are the order of presentation. Coarse mass measurements were not available for STN and so are not included.

Figure 3.19. Map showing stacked bar charts of monthly percent contribution to reconstructed particulate extinction (%) for particulate extinction coefficients for the northwest U.S. regions of the IMPROVE network. Starting from the base of the chart, ammonium sulfate, organics, light-absorbing carbon, ammonium nitrate, soil, and coarse mass are the order of presentation.

Figure 3.20. Map showing stacked bar charts of monthly percent contribution to reconstructed particulate extinction (%) for particulate extinction coefficients for the southwest U.S. regions of the IMPROVE network. Starting from the base of the chart, ammonium sulfate, organics, light-absorbing carbon, ammonium nitrate, soil, and coarse mass are the order of presentation.

Figure 3.21. Map showing stacked bar charts of monthly percent contribution to reconstructed particulate extinction (%) for particulate extinction coefficients for the eastern U.S. regions of the IMPROVE network. Starting from the base of the chart, ammonium sulfate, organics, light-absorbing carbon, ammonium nitrate, soil, and coarse mass are the order of presentation.

Figure 4.1. Ratio of 24-hour sulfate concentrations measured by collocated and routine IMPROVE B modules at Big Bend NP.

Figure 4.2. Summary of the results of Theil regressions for the 80th percentile SO₂⁻ (3*S for IMPROVE program) concentrations from 1989 to 1999. Solid up or down arrows show which sites have trends with a significance level of at least 10%. Arrows with enclosed hatch lines show whether the trend was up or down but not statistically significant. Arrows with a bar across the tail represent CASTNet sites, while arrows without the bar show IMPROVE monitoring sites. The numbers are the percent changes from the overall median of the 80th percentile.

Figure 4.3. Summary of the results of Theil regressions for the 20th percentile SO₂⁻ (3*S for IMPROVE program) concentrations from 1989 to 1999. Solid up or down arrows show which sites have a trend with a significance level of at least 10%. Arrows with enclosed hatch lines show whether the trend was up or down but not statistically significant. Arrows with a bar across the tail represent CASTNet sites, while arrows without the bar show IMPROVE monitoring sites. The numbers are the percent changes from the overall median of the 20th percentile.

Figure 4.4. The percent change in the NET SO₂ emissions for each state in the conterminous United States from 1990 through 1999. The light gray states have decreasing trends, while the dark gray states have increasing trends. States without hatch marks have trends that are significant with two-sided P values below 0.1. The percent changes were calculated by dividing the change in emissions over the 10-year period by the 1990 emissions estimated from the trend line. The 1999 SO₂ emission rates for each state are in parentheses.
Figure 4.5. Comparison of the 80th percentile SO_2^- concentrations (3*S for IMPROVE program) and NET SO_2 emissions aggregated over northeastern, southeastern, south-middle, and western United States regions. In each plot the SO_2^- and SO_2 emission scales have a factor of 3 change between the low and high values.

Figure 4.6. Theil trends in the haze index of the annual average 20% best visibility days.

Figure 4.7. Theil trends in the haze index of the annual average 20% worst visibility days.

Figure 4.8. The wintertime elemental carbon trend using IMPROVE data from monitoring sites with a minimum of 7 years of data. The triangles indicate a increasing (up) or decreasing (down) trend, and black arrows have a significant trend at the 0.05 level. The isopleths are the slope of the trend line as the % change from the median EC concentration per 10 years.

Figure 4.9. The wintertime organic carbon trend using IMPROVE data from monitoring sites with a minimum of 7 years of data.

Figure 4.10. The summertime elemental carbon trend using IMPROVE data from monitoring sites with a minimum of 7 years of data.

Figure 4.11. The summertime organic carbon trend using IMPROVE data from monitoring sites with a minimum of 7 years of data.

Figure 5.1. An example of the data validation charts from the fall 2004 report. Reconstructed fine mass concentrations, measured fine mass, and the reconstructed fine mass to measured fine mass concentration ratios are shown for the 2001–2004 time period at BIBE1. Definitions of all terms used in the axis titles can be found in the glossary in section 5.1.5 of this document.

Figure 5.2. An example of the data validation charts from the fall 2004 report. Sulfate concentrations, sulfur concentrations, and the sulfate to sulfur concentration ratios are shown for the 2001–2004 time period at OLYM1. Definitions of all terms used in the axis titles can be found in the glossary in section 5.1.5 of this document.

Figure 5.3. An example of the data validation charts from the fall 2004 report. Z scores calculated from the sulfate and sulfur concentrations and reported uncertainties are shown for the 2001–2004 time period at OLYM1. Definitions of all terms used in the axis titles can be found in the glossary in section 5.1.5 of this document.

Figure 5.4. The percentage of valid sample pairs with significant disagreement between SO_4^{2-} and $3*S$ are calculated for each month. This provides a way of tracking 1) the overall magnitude of the number of sample pairs with poor agreement relative to the number of samples collected, as well as 2) the direction of bias at the network level.

Figure 5.5. An example of the data validation charts from the fall 2004 report. Aluminum concentrations, iron concentrations, and the aluminum to iron enrichment factors are shown for the 2001–2004 time period at DENA1. Definitions of all terms used in the axis titles can be found in the glossary in section 5.1.5 of this document.

Figure 5.6. An example of the data validation charts from the fall 2004 report. Calcium concentrations, iron concentrations, and the calcium to iron enrichment factors are shown for the 2001–2004 time period at DENA1. Definitions of all terms used in the axis titles can be found in the glossary in section 5.1.5 of this document.
Figure 5.7. An example of the data validation charts from the fall 2004 report. Silicon concentrations, iron concentrations, and the silicon to iron enrichment factors are shown for the 2001–2004 time period at DENA1. Definitions of all terms used in the axis titles can be found in the glossary in section 5.1.5 of this document. ... 152

Figure 5.8. An example of the data validation charts from the fall 2004 report. Titanium concentrations, iron concentrations, and the titanium to iron enrichment factors are shown for the 2001–2004 time period at DENA1. Definitions of all terms used in the axis titles can be found in the glossary in section 5.1.5 of this document. ... 153

Figure 5.9. An example of the data validation charts from the fall 2004 report. Soil concentrations, the A module cut point and the soil to reconstructed mass concentration ratios are shown for the 2001–2004 time period at DENA1. Definitions of all terms used in the axis titles can be found in the glossary in section 5.1.5 of this document. ... 154

Figure 5.10. An example of the data validation charts from the fall 2004 report. Organic carbon concentrations, elemental carbon concentrations, and the organic carbon to elemental carbon concentration ratios are shown for the 2001–2004 time period at YOSE1. Definitions of all terms used in the axis titles can be found in the glossary in section 5.1.5 of this document. ... 155

Figure 5.11. An example of the data validation charts from the fall 2004 report. OMC concentrations, OMH concentrations, and the OMH to OMC concentration ratios are shown for the 2001–2004 time period at ACAD1. Definitions of all terms used in the axis titles can be found in the glossary in section 5.1.5 of this document. ... 156

Figure 5.12. An example of the data validation charts from the fall 2004 report. Nitrate concentrations, reconstructed fine mass concentrations, and the ammonium nitrate to reconstructed fine mass concentration ratios are shown for the 2001–2004 time period at ACAD1. Definitions of all terms used in the axis titles can be found in the glossary in section 5.1.5 of this document. ... 157

Figure 5.13. An example of the data validation charts from the fall 2004 report. Equation 3 in section 5.1.7 is used to calculate the A, B, and C module cut points from the reported flow rates. The cut points for the A, B, and C modules are shown for the fall–December 2004 data delivery batch at VOYA2. Definitions of all terms used in the axis titles can be found in the glossary in section 5.1.5 of this document. ... 158

Figure 5.14. An example of the flow rate problem discovered in the data validation charts from the fall 2004 report. Equation 3 in section 5.1.7 is used to calculate the A, B, and C module cut points from the reported flow rates. The cut points for the A, B, and C modules are shown for the fall–December 2004 data delivery batch at HOOV1. Definitions of all terms used in the axis titles can be found in the glossary in section 5.1.5 of this document. ... 160

Figure 5.15. An example of the data validation charts from CNL (a) and from CIRA’s summer 2004 report (b). Panel a shows sulfate and three times sulfur concentrations for summer 2004 at CHAS1. Panel b shows sulfate concentrations, sulfur concentrations, and the sulfate to sulfur concentration ratios for 2001–2004 at CHAS1. While the incomplete sampling on the A module is obvious in panel b, the sulfate to sulfur discrepancies in panel a do not look similarly alarming. The sampling problem, which is obvious starting in early 2003, was not caught until the 2004 data were examined at CIRA and was not fully acted upon until the summer of 2004. Definitions
of all terms used in the axis titles can be found in the glossary in section 5.1.5 of this document.

Figure 5.16. The plot shows the 50% cut point as a function of flow rate as determined by two separate collection efficiency tests. The collection efficiency of the IMPROVE cyclone was characterized at the Health Sciences Instrumentation Facility at the University of California at Davis. The efficiency was measured as a function of particle size and flow rate using two separate methods: PSL and SPART. The PSL method uses microspheres of fluorescent polystyrene latex particles (PSL) produced by a Lovelace nebulizer and a vibrating stream generator and analyzed by electron micrographs. The SPART method uses a mixture of PSL particles produced by a Lovelace nebulizer and analyzed by a single particle aerodynamic relaxation time (SPART) analyzer. The aerodynamic diameter for 50% collection, d50, was determined for each flow rate.

Figure 6.1. A terrain map of Texas and Mexico as well as some major cities and points of interest from the BRAVO study.

Figure 6.2. Big Bend’s particulate light extinction budget during BRAVO.

Figure 6.3. Big Bend National Park five-year light extinction budget. All days with that fall on the same day of the year were averaged together, then the data were smoothed using a 15-day moving average.

Figure 6.4. (Left) SO₂ emissions based on the 1999 BRAVO emissions inventory used in the REMSAD and CMAQ-MADRID modeling. No emissions were included beyond the black outline shown in the figure. Mexico City and Popocatepetl volcano emissions are located in the three most southern emission grid cells.

Figure 6.5. Fraction of time that air parcels spent during ten-day trajectories for periods with the a) 20% highest concentrations of particulate sulfate compounds and b) for the periods with the 20% lowest concentrations of particulate sulfate during the BRAVO study period July through October 1999.

Figure 6.6. Airmass transport patterns to Big Bend, TX, during three sulfate episodes. Each isopleth shows the most likely pathway the airmass traversed prior to impacting Big Bend.

Figure 6.7. Estimates by several data analysis and modeling methods of the study-period averaged percent contributions to particulate sulfate at Big Bend by U.S. and Mexico sources. TAGIT only attributed the Carbón power plants, while CMAQ and Synthesized CMAQ attribution did not distinguish Carbón from Mexico.

Figure 6.8. Smoothed daily estimates by source regions to particulate sulfate concentration (top plot) and fraction of total predicted particulate sulfate (bottom plot) at Big Bend during the study period.

Figure 6.9. Estimated contributions to particulate haze by various particulate sulfate source regions. The top plot shows the absolute haze contributions by the various particulate sulfate sources as well as the total particulate haze level (black line). The bottom plot shows the fractional contribution to haze by the various sources.

Figure 6.10. Estimated contributions by particulate sulfate source regions to Big Bend particulate haze levels for the 20% haziest days and the 20% least hazy days of the BRAVO study period.
Figure 6.11. Examples of geographic distribution of the fraction of time that air parcels spend during the five days prior to arriving at Big Bend National Park for the months of January, May, July, and September based upon a five-year analysis period (1998 to 2002). ... 194

Figure 6.12. Annual variation of organic carbon mass concentrations in the fine mode of the aerosol (PM$_{2.5}$), from data obtained from the IMPROVE database (http://vista.cira.colostate.edu/views/). A measure of interannual variability is indicated by the yellow shaded area, which envelops one standard deviation in the data. Blue lines indicate the fraction of fine particulate mass concentration apportioned to organic carbon over the long-term average and for 2002. ... 196

Figure 6.13. Fine mass concentrations reconstructed from individual species concentration measurements, plotted against fine mass concentrations determined by gravimetry (weighing of filters). Reconstructions are shown for two assumptions regarding the elemental-to-molecular mass conversion for organic carbon. ... 198

Figure 6.14. PM$_{10}$ aerosol mass concentrations reconstructed from individual species concentration measurements, for the Turtleback Dome and Valley Floor sites. 199

Figure 6.15. Reconstructed, study-averaged extinction budget at Turtleback Dome. All species except coarse mass are in the fine aerosol mode. ... 200

Figure 6.16. MODIS image (August 18) of smoke from fires (red areas) in Oregon and in Sequoia National Park transported into California’s Central Valley. ... 201

Figure 6.17. Study-averaged source contributions of fine aerosol organic carbon (expressed as % of OC) at Turtleback Dome. ... 202

Figure 6.18. Annual mean value of R_{oc} multiplier derived from an ordinary least square multilinear regression analysis. ... 206

Figure 6.19. Map of the mean ammonium sulfate mass scattering efficiency (m2 g$^{-1}$). The size of the circle reflects the magnitude of the efficiency, which is printed near the circle. .. 209

Figure 6.20. Map of the mean POM mass scattering efficiency (m2 g$^{-1}$). The size of the circle reflects the magnitude of the efficiency, which is printed near the circle. .. 209

Figure 6.21. Scatter plot of gravimetric and reconstructed fine mass. An ordinary least square slope with the intercept set equal to 0 is 1.03 ± 0.004 with an $R^2 = 96$. ... 232

Figure 6.22. Scatter plot of gravimetric and reconstructed coarse mass. An ordinary least square slope with the intercept set equal to 0 is 0.95 ± 0.01 with an $R^2 = 81$. ... 233

Figure 6.23. A map of stacked bar charts showing the fine mass concentration of each species at each of the nine locations at which measurements were made. The continuous lines are running averages of the data collected historically at each monitoring site. .. 234

Figure 6.24. A map of stacked bar charts showing the coarse mass concentration of each species at each of the nine locations at which measurements were made. The continuous lines are running averages of the data collected historically at each monitoring site. .. 235

Figure 6.25. A map of stacked bar charts showing the fractional contribution of each fine mass species to gravimetric mass at each of the nine locations at which measurements were made. 236
Figure 6.26. A map of stacked bar charts showing the fractional contribution of each coarse mass species to gravimetric mass at each of the nine locations at which measurements were made. The stacked bar chart for the month of January is not shown for Sequoia National Park because of a large uncertainty in PM$_{10}$ gravimetric mass.
LIST OF TABLES

Table S.1. IMPROVE monitoring sites listed according to region. The monitoring site codes are in parentheses. .. S-2

Table 1.1. Discontinued and current IMPROVE particulate monitoring sites. The site groupings are displayed in Figure 1.2.. 6

Table 1.2. Class I areas and the representative monitoring site.. 11

Table 1.3. Sites with a fifth collocated module. .. 17

Table 1.4. Transmissometer receiver and transmitter locations. .. 21

Table 1.5. IMPROVE nephelometer network site locations... 23

Table 1.6. Major network-wide changes in sampling, analysis and data reporting...................... 28

Table 1.7. Comparison of annual average concentrations between collocated IMPROVE and STN monitoring sites. ... 30

Table 2.1. IMPROVE equations..35

Table 4.1. Five-year trends in measurement differences at Shenandoah NP.............................. 121

Table 4.2. Important differences between samplers deployed in the CASTNet and IMPROVE networks.. 123

Table 5.1. Data validation levels as defined by IMPROVE. .. 140

Table 5.2. Flow rate-related validation flag definitions and application criteria........................ 169

Table 6.1. Site description. ... 216

Table 6.2. Assumed molecular forms of each particulate species and method of estimation used. ... 217

Table 6.3. Statistical summary of all fine mass and fine mass species concentrations. 219

Table 6.4. Statistical summary of all coarse mass and coarse mass species concentrations.219

Table 6.5. Statistical summary of annual fine mass and fine mass species concentrations by site. ... 220

Table 6.6. Statistical summary of annual coarse mass and coarse mass species concentrations by site. ... 222