Network operation status

The IMPROVE network operated 90 aerosol samplers, 17 transmissometers, 8 nephelometers, and 5 camera systems during the Spring 2000 monitoring season (March, April, and May 2000).

Preliminary data collection statistics for the Spring 2000 season are:

- Aerosol: 91% collection
- Optical (transmissometer): 91% collection
- Optical (nephelometer): 97% collection
- Scene (photographic): 79% collection

As of May 31, 2000, 81 new aerosol samplers have been installed. The following monitoring sites received the new, IMPROVE Version II aerosol sampler during Spring 2000:

- Acadia NP
- Bandelier NM
- Big Bend NP
- Bosque del Apache NWR
- Brigantine NWR
- Bryce Canyon NP
- Canyonlands NP
- Cape Romain NWR
- Capitol Reef NP
- Chassahowitzka NWR
- Chiricahua NM
- Cohutta W
- Crater Lake NP
- Glacier NP
- Grand Canyon NP
- Great Basin NP
- Great Gulf W
- Great Sand Dunes NM
- Great Smoky Mountains NP
- Guadalupe Mountains NP
- Ike’s Backbone
- James River Face W
- Jarbridge W
- Kalmiopsis W
- Lava Beds NM
- Linville Gorge W
- Lone Peak W
- Lye Brook W
- Mammoth Cave NP
- Mesa Verde NP
- Mingo NWR
- Monture
- Moosehorn NWR
- Mount Baldy W
- Mount Hood W
- Okefenokee NWR
- Petrified Forest NP
- Salt Creek NWR
- Shining Rock W
- Sipsey W
- Starkey
- Sycamore Canyon W
- Three Sisters W
- Tonto NM
- Upper Buffalo W
- Virgin Islands NP
- Zion NP

Data availability status

Particulate data for all measurements including carbon are available through November 1999 on the UC-Davis FTP site, at http://improve.cnl.ucdavis.edu. Seasonal summaries beginning with 1998 are also available on the site.

Optical data are available through May 1999 on the Cooperative Institute for Research in the Atmosphere (CIRA) FTP site, at ftp://alta_vista.cira.colostate.edu. Data files are being upgraded to reflect more information and should be complete by late summer.

Photographic slides are archived but are not routinely analyzed or reported. Complete photographic archives and slide spectrums (if completed) are available at Air Resource Specialists, Inc.

IMPROVE data are available to interested parties for use in presentations, management plans, and other projects. All data are validated using IMPROVE protocols, which are documented in standard operating procedures. Standard operating procedures are available for site selection; instrument installation, operation, and servicing; and data collection, reduction, validation, reporting, and archiving.
Visibility news

Remote high-resolution digital camera systems developed for the USFS

The United States Forest Service (USFS) plans to establish several new photographic monitoring sites later this summer to complement IMPROVE’s expanding monitoring network. These monitoring sites will receive a remote, high-resolution digital camera system.

The new systems contain digital cameras instead of 35mm film cameras, to allow the collected photographic images to be readily available for distribution, presentation, or Internet applications. The new systems also operate on solar/battery power and require minimal user maintenance and servicing. As seen in the photograph below, the system approved by the USFS consists of five major components:

- **Digital camera:** A Kodak DC290 digital camera with integrated scripting places the camera in a specified state upon power-up and waits for commands from the controller. The custom script includes power-off functions to limit battery drain, sets the date and time, sets the zoom lens, and records image information on a memory card. The camera will store up to 120 high-resolution (1792 x 1200 pixel) images on its memory card, which can be downloaded to a personal computer.

- **Controller:** The custom-designed controller applies power to the camera, reads the current temperature and battery voltage, and initiates image capture.

- **Computer Interface:** A palmtop computer interface allows the user to define the image acquisition schedule and camera settings, observe current operational status, and perform routine servicing and troubleshooting.

- **Enclosure:** A lockable environmental enclosure houses the system’s components.

- **Power System:** A 12 volt gel battery, a regulator, and a solar panel provide power to the camera system.

The remote, high-resolution digital camera system is designed to operate for up to 30 days without operator intervention, at temperatures from 10°F to 110°F. At the end of 30 days, the operator exchanges the memory card and can download the images to a personal computer for immediate availability.

For more information contact Rich Fisher of the USFS.
Telephone: 970/295-5981. Fax: 970/295-5959. E-mail: rfisher@lamar.colostate.edu

New MARAMA representative to IMPROVE

Charles O. Davis III recently joined the IMPROVE Steering Committee as the representative from MARAMA, the Mid-Atlantic Regional Air Management Association. Davis fills the position vacated by Charles Pietarinen.

Davis, an environmental chemist for North Carolina’s Department of Air Quality, is involved with statewide ambient air quality monitoring including ozone monitoring, ambient hydrocarbon analysis, review of data sets, and determination of the Hazardous Air PollutantS (HAPS) metals content of Total Suspended Particles (TSP). He has also extensive experience with light duty mobile source emissions.

Davis is also involved with a special project outside of Raleigh, where ozone concentrations are continuously monitored at ground level, 250 feet, 420 feet, and 1,420 feet on a 2,000-foot television tower. A Photochemical Assessment Monitoring Station (PAMS) collects hydrocarbons at three levels at the same location.

Charles Davis can be contacted at his office in North Carolina.
Telephone: 919/715-0664. Fax: 919/733-1812. E-mail: Charles.O.Davis@ncmail.net

Visibility news continued on page 7...
Third serial IMPROVE report continues to examine aerosol and visibility trends

Introduction

Spatial and Seasonal Patterns and Temporal Variability of Haze and its Constituents in the United States, Report III, has been released. It is the third in a series of IMPROVE reports that examine the distribution of aerosols and trends in visibility using IMPROVE monitoring data. This article summarizes major chapters of the report.

Each of the three reports have built upon data collected and analyzed in the earlier reports. The three serial reports are:

- Spatial and Seasonal Patterns and Long Term Variability of the Composition of the Haze in the United States: An Analysis of Data from the IMPROVE Network, included data from 43 monitoring sites and covered the period March 1992 - February 1995.
- Spatial and Seasonal Patterns and Temporal Variability of Haze and its Constituents in the United States, Report III. The report examines 49 sites (51 sites for extreme fine mass analysis) for the 3-year period (March 1996 through February 1999) and 29 sites for an 11-year trend analysis. Of the 49 sites, 31 have optical monitoring. Table 1 lists the sites, grouped into 21 regions, which are used for expressing analysis conclusions.

Spatial Distribution of Aerosols and Chemical Composition

Coarse mass (the difference between PM$_{10}$ and PM$_{2.5}$), fine aerosols, and specific components of the aerosol concentrations were examined for the 3-year period (March 1996 through February 1999). Findings include:

- Coarse mass concentrations are highest in the:
 - Southeast
 - Pacific Coastal Mountains
- Coarse mass concentrations are lowest in the:
 - Cascade Mountains
 - Sierra-Humboldt

<table>
<thead>
<tr>
<th>Table 1. IMPROVE monitoring sites listed according to region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
</tr>
<tr>
<td>Denali NPP st</td>
</tr>
<tr>
<td>Appalachian Mountains</td>
</tr>
<tr>
<td>Great Smoky Mountains NP sote</td>
</tr>
<tr>
<td>Shenandoah NP sote</td>
</tr>
<tr>
<td>Dolly Sods W soe</td>
</tr>
<tr>
<td>James River Face W se</td>
</tr>
<tr>
<td>Shining Rock W soe</td>
</tr>
<tr>
<td>Boundary Waters</td>
</tr>
<tr>
<td>Boundary Waters Canoe Area soe</td>
</tr>
<tr>
<td>Sierra-Humboldt</td>
</tr>
<tr>
<td>Columbia River NSA oe</td>
</tr>
<tr>
<td>Mount Rainier NP sote</td>
</tr>
<tr>
<td>Snoqualmie Pass W soe</td>
</tr>
<tr>
<td>Three Sisters W soe</td>
</tr>
<tr>
<td>Central Rocky Mountains</td>
</tr>
<tr>
<td>Bridger W sote</td>
</tr>
<tr>
<td>Great Sand Dunes NM ste</td>
</tr>
<tr>
<td>Rocky Mountain NP sote</td>
</tr>
<tr>
<td>Weminuche W ste</td>
</tr>
<tr>
<td>Yellowstone NP ste</td>
</tr>
<tr>
<td>Colorado Plateau</td>
</tr>
<tr>
<td>Bandelier NM sote</td>
</tr>
<tr>
<td>Bryce Canyon NP ste</td>
</tr>
<tr>
<td>Canyonlands NP sote</td>
</tr>
<tr>
<td>Grand Canyon NP soe</td>
</tr>
<tr>
<td>Mesa Verde NP ste</td>
</tr>
<tr>
<td>Petrified Forest NP sote</td>
</tr>
<tr>
<td>Great Basin</td>
</tr>
<tr>
<td>Jarbidge W sote</td>
</tr>
<tr>
<td>Great Basin NP se</td>
</tr>
<tr>
<td>Mid-Atlantic</td>
</tr>
<tr>
<td>Edwin B. Forsythe NWR se</td>
</tr>
<tr>
<td>Mid-South</td>
</tr>
<tr>
<td>Upper Buffalo W soe</td>
</tr>
<tr>
<td>Northeast</td>
</tr>
<tr>
<td>Acadia NP sote</td>
</tr>
<tr>
<td>Lye Brook W se</td>
</tr>
<tr>
<td>Moosehorn NWR se</td>
</tr>
</tbody>
</table>

s fine mass/extinction spatial analysis
o optical monitoring
t trend analysis
e extreme fine mass analysis

NM National Monument
NP National Park
NPP National Park and Preserve
NS National Seashore
NSA National Scenic Area
NWR National Wildlife Refuge
W Wilderness
Seasonal Distribution

Figures 3 and 4 are summary plots of reconstructed fine mass and reconstructed light extinction, and the contribution of each species for all regions except Washington, D.C., respectively. Seasonal findings for the 3-year period (March 1996 through February 1999) include:

- **Summer** shows the highest fine mass in 19 regions.
- **Fall** shows the highest fine mass in the Northern Rocky Mountains region.
- **Summer extinction** is highest in the:
 - Sonoran Desert
 - Great Basin
 - West Texas
 - Colorado Plateau
 - Pacific Coastal Mountains
 - Sierra-Humboldt
 - Sierra-Nevada
- **Spring extinction** is highest in the:
 - Great Basin
 - Sonoran Desert
 - Northeast
 - Central Rocky Mountains
- **Winter extinction** is highest in the:
 - Cascade Mountains
 - Boundary Waters
 - Great Sand Dunes NP
 - Great Smoky Mountains NP
 - Big Bend NP
 - Bandelier NM
 - Badlands NP
 - Glacier NP
 - Acadia NP
 - Point Reyes NS
 - Yellowstone NP
 - Weminuche W
 - Bridger W
 - Crater Lake NP
 - Tonto NM
 - Yosemite NP

Temporal Trends in Visibility and Aerosol Concentrations

The haziest days are defined as those with the highest 20% of fine mass concentrations. Findings for 29 sites included in the 11-year analysis include:

- **Visibility** is worsening at:
 - Great Smoky Mountains NP
 - Chiricahua NM
 - Great Sand Dunes NP
 - Mesa Verde NP
 - Bryce Canyon NP
- **Visibility** is improving at:
 - Petrified Forest NP
 - Mount Rainier NP
 - Redwood NP
 - Canyonlands NP
 - Pinnacles NM
 - San Gorgonio W
 - Glacier NP
 - Acadia NP
 - Point Reyes NS
 - Yellowstone NP
 - Weminuche W
 - Bridger W
 - Crater Lake NP
 - Tonto NM
 - Yosemite NP

Specific components of fine aerosols show that:

- Carbon (organic and light-absorbing carbon) is the largest single component in the:
 - Cascade Mountains
 - Alaska
 - Central Rocky Mountains
 - Northern Rocky Mountains
 - Pacific Coastal Mountains
 - Great Basin
 - Colorado Plateau
 - Sierra-Nevada
 - Sierra-Humboldt
 - Wasatch
 - Northeast
 - Sonoran Desert
 - Southeast
 - Washington, D.C.
 - West Texas
- Sulfate is the largest single component in the:
 - Appalachian Mountains
 - Boundary Waters
 - Mid-Atlantic
 - Mid-South
 - Northern Great Plains
 - Appalachian Mountains
 - Boundary Waters
 - Northeast
 - Sonoran Desert
 - Southeast
 - Washington, D.C.
 - West Texas
- Organics is the largest single component in the:
 - Pacific Northwest
- Nitrates is the largest single component in:
 - Southern California
 - Southeast
 - Washington, D.C.
 - West Texas
- Fine aerosols are the major contributors to light extinction. Sulfates are the largest contributor to light extinction in 17 of the 21 regions.

Spatial Distribution of Reconstructed Light Extinction

The light extinction coefficient is calculated from the measured aerosol species’ concentrations by multiplying the concentration of a species by its light extinction efficiency and summing over all species. To show the effect of aerosols on visibility, the deciview (dv) scale is applied to total reconstructed aerosol extinction. A dv value of zero indicates pristine conditions. Figures 1 and 2 are isopleths of deciview and extinction using IMPROVE data. Findings include:

- The greatest light extinction occurs in the:
 - Eastern United States
 - Southern California
- The least light extinction occurs in the:
 - Great Basin (nonurban)
 - Alaska
 - Colorado Plateau (nonurban)
- Fine aerosols are the major contributors to light extinction. Sulfates are the largest contributor to light extinction in 17 of the 21 regions.
Figure 1. Three-year averages of deciview values using only data collected in the IMPROVE Network (March 1996 - February 1999).

Figure 2. Three-year averages of total reconstructed aerosol light extinction coefficient (Mm$^{-1}$) using only data collected in the IMPROVE Network (March 1996 - February 1999).
Figure 3. Summary plot of reconstructed fine mass and the fractional contribution of each species for the 20 monitoring regions in the IMPROVE Network, excluding Washington, D.C. (March 1996 - February 1999).

Figure 4. Summary plot of reconstructed light extinction and the fractional contribution of each species for the 20 monitoring regions in the IMPROVE Network, excluding Washington, D.C. (March 1996 - February 1999).
Recommended Future Research

The report concludes by discussing the uncertainties in the relationship between aerosol species concentrations and atmospheric extinction. Primary key concerns requiring further research are:

- Carbon mass measurements need refinement.
- Absorption estimation needs to be more accurate.
- Attribution of smoke to fine mass and/or extinction needs methodology development.

Visibility news continued from page 2

WRAP initiates Web database development

The Ambient Monitoring and Reporting Forum of the Western Regional Air Partnership (WRAP) is contracting with the Cooperative Institute for Research in the Atmosphere (CIRA) to design, develop, implement, and maintain an air quality and meteorological data integration, analysis, and delivery system, accessible on the World Wide Web. The database will contain data collected at IMPROVE and IMPROVE Protocol monitoring sites west of the 100th meridian, and from special studies. It will contain aerosol and optical data, meteorological data (National Weather Service meteorological surface and upper air data and Remote Automated Weather Station surface data), and additional air quality data (Acid Rain Emissions Tracking System, Aerometric Information Retrieval System), and others as determined by WRAP. The database is scheduled to be operational by the end of this year.

For more information contact Doug Fox at CIRA. Telephone: 970/491-3983. Fax: 970/491-8598. E-mail: DFox@CIRA.colostate.edu

University of Vienna to host conference

The “Conference on Visibility, Aerosols, and Atmospheric Optics” will be held in Vienna, Austria, September 11-15, 2000. The conference will be held at the Institute of Experimental Physics of the University of Vienna, and is sponsored by Chemisch-Physikalische Gesellschaft and co-sponsored by the Clean Air Commission of the Austrian Academy of Sciences and Gesellschaft für Aerosolforschung, GAEF, Germany.

Information and topics to be presented at the conference can be found at: http://www.ap.univie.ac.at/users/Visibility.2000 or at http://visibility.exp.univie.ac.at

For more information contact John Bunyak at the National Park Service. Telephone: 303/969-2818. Fax: 303/969-2822. E-mail: john_bunyak@nps.gov

For more information contact John Bunyak at the National Park Service. Telephone: 303/969-2818. Fax: 303/969-2822. E-mail: john_bunyak@nps.gov
IMPROVE Steering Committee members represent their respective agencies and meet periodically to establish and evaluate program goals and actions. IMPROVE-related questions within agencies should be directed to the agency’s Steering Committee representative. Steering Committee representatives are:

U.S. EPA / NOAA
Marc Pitchford
 c/o Desert Research Institute
755 E. Flamingo Road
 Las Vegas, NV 89119-7363
 Telephone: 702/895-0432
 Fax: 702/895-0507
 E-mail: marcp@snsc.dri.edu

USFS
Rich Fisher
Air Specialist, Wash. Office
Central Administrative Zone
2150 Centre Avenue, Building A
Fort Collins, CO 80526
Telephone: 970/295-5981
Fax: 970/295-5959
E-mail: rfisher@lamar.colostate.edu

STAPPA
Dan Ely
Colorado Dept. of Public Health
and Environment
Air Pollution Control Div.
4300 Cherry Creek Drive S.
Denver, CO 80222-1530
Telephone: 303/692-3228
Fax: 303/782-5493
E-mail: dwely@smtpgate.dphe.state.co.us

NPS
William Malm
NPS-AIR
Colorado State University
CIRA - Foothills Campus
Fort Collins, CO 80523
Telephone: 970/491-8292
Fax: 970/491-8598
E-mail: malm@cira.colostate.edu

FWS
Sandra Silva
Fish and Wildlife Service
P.O. Box 25287
12795 W. Alameda
Denver, CO 80225
Telephone: 303/969-2814
Fax: 303/969-2822
E-mail: sandra_v_silva@nps.gov

BLM
Scott Archer
Sciences Center (RS-140)
P.O. Box 25047
Denver, CO 80225-0047
Telephone: 303/236-6400
Fax: 303/236-3508
E-mail: sarcher@blm.gov

WESTAR
Robert Lebens
9 Monroe Parkway
Suite 250
Lake Oswego, OR 97035
Telephone: 503/387-1660 ext.6
Fax: 503/387-1671
E-mail: biebens@westar.org

NESCAUM
Rich Poirot
VT Agency of Natural Resources
103 South Main Street
Building 3 South
Waterbury, VT 05676
Telephone: 802/241-3807
Fax: 802/244-5141
E-mail: richpo@dec.anr.state.vt.us

MARAMA
Charles O. Davis III
North Carolina Division of
Air Quality/Ambient Monitoring
1641 Mail Service Center
Raleigh, NC 79690-1641
Telephone: 919/715-0664
Fax: 919/733-1812
E-mail: charles.o.davis@ncmail.net

ASSOCIATE MEMBERS
Associate Membership in the IMPROVE Steering Committee is designed to foster additional IMPROVE-comparable visibility monitoring that will aid in understanding Class I area visibility, without upsetting the balance of organizational interests obtained by the steering committee participants. Associate Member representatives are:

STATE OF ARIZONA
Tom Moore
State of Arizona
Dept. of Environmental Quality
3033 North Central Avenue
Phoenix, AZ 85012-2905
Telephone: 602/207-2353
Fax: 602/207-2299
E-mail: moore.tom@ev.state.az.us

Government organizations interested in becoming Associate Members may contact any Steering Committee member for information.

IMPROVE Newsletters are also available on the National Park Service Web site at: http://www.aqd.nps.gov/ard/impr/index.htm

printed on recycled paper