Where There’s Smoke There’s Haze: Estimating the Contribution of Fire Types to PM2.5 and Haze

Bret A. Schichtel (NPS), William C. Malm (NPS), Jeffrey L. Collett, Jr. (CSU), Amy P. Sullivan (CSU), Amanda S. Holden (CSU), Leigh A. Patterson (CSU), Marco A. Rodriguez (CSU), Michael G. Barna (NPS)
Sources Contributing to Particulate Carbon

- Source can be divided into a contemporary or fossil fraction
- Contemporary or biogenic carbon source include
 - Fires, SOC from vegetation, cooking, pollen, and others
- Fossil or “old” carbon arises from burning of fossil fuels
- A large fraction of ambient particulate carbon is secondary organic carbon (SOC) formed from emitted organic gases
Radiocarbon (14C) Distinguishing Between Contemporary and Fossil Carbon

- **Fraction Contemporary C**
 - 80-100% - rural sites
 - 70-80% - near urban sites
 - 50% - urban sites
 - 60-75% in industrial Midwest

- Similar fraction contemporary carbon in winter and summer
Sources of Organic Aerosol (OA)

Photochemistry
VOC + hν, O₃, OH, NO₃

Gas Phase Emissions

Secondary Organic Aerosol

Primary Organic Aerosol

Carnegie Mellon

Center for Atmospheric Particle Studies
Summertime Fraction of SOA in Fossil and Contemporary Carbon

- Assumes all winter organic carbon is primary
 - Underestimates the summer secondary particulate carbon
- Assumes that a similar mix of sources contribute to the particulate carbon in the summer and winter.
 - Impact on estimate is unknown

<table>
<thead>
<tr>
<th></th>
<th>Secondary TC</th>
<th>Secondary OC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogenic</td>
<td>36% (6.4)</td>
<td>41% (7.3)</td>
</tr>
<tr>
<td>Fossil</td>
<td>23% (10)</td>
<td>36% (15)</td>
</tr>
</tbody>
</table>
Laboratory and field study have shown evidence for large contributions of SOA from biomass emissions. Aging of VOCs from biomass burning rapidly creates a lot of SOA, doubling the organic carbon concentrations. Current state of the art modeling estimates little to no SOA from biomass burning.
Contribution of Fires to Particulate Carbon

- Wildfire
- Agricultural Fire
- Prescribed Fire
- Residential Wood Burning
Emissions from Different Fire Types

- Wildfire and wildland fire use, “Natural fires”, are the largest sources of smoke, especially in the western United States accounting for >80% of the acres burned.
Prescribed Fire in the Grand Canyon

Winter smoke from a prescribed fire trapped below the Grand Canyon rim

Satellite detects of fires March 7-12, 2005

Fire Detected by GOES-10 Mar 7, 2005

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organics</td>
<td>75%</td>
</tr>
<tr>
<td>SOIL</td>
<td>2%</td>
</tr>
<tr>
<td>Amm NO3</td>
<td>10%</td>
</tr>
<tr>
<td>Amm SO4</td>
<td>2%</td>
</tr>
<tr>
<td>Coarse Mass</td>
<td>4%</td>
</tr>
<tr>
<td>EC</td>
<td>7%</td>
</tr>
</tbody>
</table>

March 11, 2005
2005 Agricultural Fires

- IMPROVE (110 Sites)
- EPA PROTOCOL (8 Sites)
- 2005 Agriculture Fires
Smoke Management Needs for Air Quality Regulations

- Develop an unambiguous routine and cost effective methodology for apportioning primary and secondary carbonaceous compounds in PM2.5 RETROSPECTIVELY to prescribed, wildfire, agricultural fire, and residential wood burning activities
 - Daily contributions needed for Haze Rule to properly estimate natural contribution and contribution to worst 20% haze days
 - Annual and daily contributions needed for PM2.5 and PM10 NAAQS
 - Long term data needed to assess successes of smoke management policies
- Similar needs for ozone and reactive nitrogen deposition issues
Apportionment Methods

- Chemical transport models CTM)
 - Subject to large errors in inputs
 - Current CTM model simulations estimate little to no smoke SOA
 - Results are unconstrained by measured data

- Receptor Models
 - Chemical Mass Balance
 - Can’t apportion secondary aerosols
 - Factor Analysis e.g. Positive Matrix Factorization (PMF)
 - Non-unique source factors

PMF modeling appears to have combined SOC from vegetation in with fire
Hybrid Source Apportionment Model

Source-compositions (F)

Receptor model C=f(F,S)

Source-oriented Model
(3D Air-quality Model)
(CMAQ, CAMx)

Source Impacts

Chemistry

Meteorology

Air Quality

Receptor Model
(CMB, PMF)

Jeameen Baek et al., - Georgia Institute of Technology
Smoke Apportion: Hybrid Receptor Modeling

Primary Smoke Marker Species
IMPROVE Data
Source Oriented Transport Model + Fire Types

Hybrid Receptor Model
Source Profiles

Mobile Source, Other Sources, Other SOC sources, Primary & Sec Smoke

Wild Fire, Prescribed Fire, Agricultural Fire
Developing a Retrospective Smoke Apportionment System

- Source apportionment system to estimate the contribution of primary and secondary smoke from different types of fire
 - Primary Smoke
 - Cheap and easy smoke markers species (Levoglucosan) measurements methods applicable in routine monitoring programs
 - Smoke source profiles for wildland fuel types
 - Secondary Smoke and Smoke Types
 - Hybrid source apportionment model - Statistical model for integrating deterministic modeling results and measured data
The FLAME Experiment

- USDA Forest Service Fire Science Lab at Missoula
- Characterization of primary smoke emissions
 - Hundreds of burns
 - Fuel components and complexes
 - NW, SW, and SE fuel emphasis
 - Chemistry, optical properties, hygroscopicity
Levoglucosan vs. OC

- Levoglucosan is unique to fire and stable in the atmosphere
- Stable ratio’s for different fuel types
- In a lab fire levoglucosan is a very good smoke marker species

Graph showing the relationship between levoglucosan and OC for different fuel types:

- **Branches**
 - Equation: $y = 0.044x \pm 0.004$
 - $R^2 = 0.80$

- **Straw**
 - Equation: $y = 0.031x \pm 0.003$
 - $R^2 = 0.80$

- **Needles**
 - Equation: $y = 0.026x \pm 0.003$
 - $R^2 = 0.70$

- **Grasses/Leaves**
 - Equation: $y = 0.021x \pm 0.001$
 - $R^2 = 0.79$
Hybrid Receptor Model
Incorporating Prior Source Attribution Estimates in Chemical Mass Balance Eq

\[x_{ij}, y_{il} = \sum_{k=1}^{p} g_{ik} [f_{kj}, b_{kl}] + [e_{ij}, e_{y_{il}}] \]

- \(y_{il} = g_{ik} b_{kl} \pm e_{y_{il}} \) - Prior source contributions from the \(k^{\text{th}} \) source to the \(i^{\text{th}} \) measurement at the receptor.

- Multiplicative coefficients relating prior source attributions estimates, \(Y \) to \(G \)

- Positive Matrix Factorization (PMF):
 - Only the \(X \) and \(Y \) are known and the CMB equation is solved for the source contributions (\(G \)), source factors (\(F \)) and \(b \)
Incorporate CTM results into PMF optimization technique

\[Q = \sum_j \sum_i \left(x_{ij} - \sum_{k=1}^{p} g_{ik} f_{kj} \right)^2 + \sum_k \sum_i \left(y_{ik} - \sum_{l=1}^{p} g_{ik} b_{lk} \right)^2 \]

- \(s_{ij} \) – uncertainty in the \(j^{th} \) species for measurement I
- \(y_{sk} \) - uncertainty of the \(k^{th} \) source type for CTM modeled period I
- It is assumed that \(y_{sk} \) are known within some constant \(\lambda \)
 - By modifying \(\lambda \) the relative weight of the measured and modeled data on the solution can be adjusted. Therefore \(\lambda \) can act as a tuning coefficient
- \(G, F \) and \(B \) are found by minimizing \(Q \) using the constrained weighted least square method in PMF
Hybrid Model – Trade-offs between reproducing the measured and modeled data
Testing the Hybrid Model using Synthetic Data

- True Source Contributions
- Prior Source Contribution estimate (CTM modeling results)
- Synthetic Measurements
Source Contributions: Truth vs. Prior Estimates

Total Carbon
- $y = 0.76x$
- $R^2 = 0.43$
- RMSE: 43% - 85%

Fire
- $y = 0.56x$
- $R^2 = 0.63$
- RMSE: 93% - 167%

Mobile
- $y = 0.98x$
- $R^2 = 0.24$
- RMSE: 53% - 131%

Vegetation
- $y = 0.84x$
- $R^2 = 0.31$
- RMSE: 66% - 70%

Prior Estimates
- Fire 25%
- Mobile 41%
- Veg SOC 14%
- Area 17%
- Point 3%
Hybrid - PMF Results

- **Truth**
 - Fire: 37%
 - Mobile: 13%
 - Veg SOC: 28%
 - Area: 19%
 - Point: 3%

- **Fire Apportionment**
 - Retrieved vs. Truth
 - Error vs. Model Weight

- **Prior Estimates**
 - Fire: 43%
 - Mobile: 17%
 - Veg SOC: 32%
 - Area: 67%

Legend:
- Green: Fire
- Blue: Mobile
- Dark Blue: Veg SOC
- Orange: Area
- Yellow: Point
Hybrid Model vs. Truth
Model and Observation have near equal weight

Total Carbon
- \(y = 0.87x \)
- R\(^2\) = 0.85

Fire
- \(y = 1.10x \)
- R\(^2\) = 0.90

Mobile
- \(y = 0.81x \)
- R\(^2\) = 0.41

Vegetation
- \(y = 0.90x \)
- R\(^2\) = 0.38

Prior Estimates
- Fire: 41%
- Mobile: 14%
- Veg SOC: 17%
- Area: 3%
- Point: 3%
Routine Data Needs for the Hybrid Receptor Model

- Measured aerosol data – IMPROVE monitoring network
- Smoke marker species – not routinely measured
- Prior smoke and other source attribution results
 - Will generate daily source attribution estimates for CIA using simply trajectory based CTM results
- Fire emissions tagged by source types
 - WRAP FETS is collecting the needed information to do this
Further Developments Needed

- Hybrid model capable of estimating contributions from different fire types
- Field studies to validate and further develop smoke marker species source profiles
- Further testing of the hybrid model on real data
- Blue Sky modeling framework is a logical place for implementing a hybrid receptor model