Monitoring update

Network operation status

The IMPROVE (Interagency Monitoring of Protected Visual Environments) Program consists of 110 aerosol visibility monitoring sites selected to provide regionally representative coverage and data for 155 Class I federally protected areas. Additional instrumentation that operates according to IMPROVE protocols in support of the program includes:

- 59 aerosol samplers
- 4 transmissometers
- 32 nephelometers
- 5 digital camera systems
- 57 Webcam systems
- 5 interpretive displays

IMPROVE Program participants are listed on page 8. Federal land management agencies, states, tribes, regional air partnerships, and other agencies operate supporting instrumentation at monitoring sites as presented in the map below. Preliminary data collection statistics for the 4th Quarter 2007 (October, November, and December) are:

- Aerosol (channel A only) 95% collection
- Aerosol (all modules) 93% completeness
- Optical (transmissometer) 95% collection
- Optical (nephelometer) 97% collection
- Scene (photographic) 75% collection (does not include Webcams)

An aerosol sampler was installed in October at Pack Monadnock Summit, NH, an established air quality station operated by the state and University of New Hampshire. A nephelometer was installed at Glacier NP, MT, in November, and at Rocky Mountain NP, CO, in December, and the nephelometers at Chiricahua NM and Petrified Forest NP were transferred from National Park Service responsibility to the state of Arizona.

Both Grand Canyon NP transmissometers ended routine monitoring this quarter; the South Rim instrument was one of the first to be installed in the network, in December 1986, and was removed October 1. The In-Canyon instrument was installed December 1989 and is now only used to support the public visibility display.

Finally, the last two 35mm film cameras, at Bryce Canyon NP, UT, and Grand Canyon NP, AZ, were discontinued October 1. The cameras have taken three photographs every day since 1984 and 1983 respectively.

Data availability status

Data are available on the IMPROVE Web site, at http://vista.cira.colostate.edu/improve/Data/data.htm and on the VIEWS Web site, at http://vista.cira.colostate.edu/views. Aerosol data are available through December 2006. Transmissometer and nephelometer data are available through December 2006 and September 2007 respectively.

Photographic slide spectrums are available on the IMPROVE Web site, under Data.
North Absaroka site rebuilt after storm

The NOAB1 IMPROVE site is situated at 8144 feet above sea level on a wind-swept ridgeline about 20 miles northwest of Cody, Wyoming. The sampler is situated to represent the North Absaroka Wilderness, its namesake, and the Washakie and Teton Wildernesses to its south.

Wyoming is known for its strong and persistent winds. November 12, 2007, was a particularly windy day at NOAB1. An adjacent meteorological station recorded winds of 127 mph, which corresponds to the upper end of a “Category 3” hurricane. Two of the “dead men” which anchored the shed pulled out of the ground and a third anchor failed when the cable pulled out of the cable clamps. The shed rolled about 50 yards away and broke apart, damaging the sampler and causing the loss of two month’s worth of data. Technicians from UC-Davis and the USDA-Forest Service were able to build a new shelter and install the repaired sampler by January 4, 2008, thus preserving the data integrity for the 2008 sample year.

IMPROVE samplers have been destroyed by fires, hurricanes, and tornadoes in the past, and no doubt more will be destroyed in the future. There are two cautionary notes for site operators to consider after this event.

First, from a preventative perspective, always keep an eye out for damage to the building, tower, shed, stand, or whatever houses the sampler. This includes signs of decay in structural members, loose mooring cables, or any broken or damaged mounting equipment. In this case, the building probably could not have withstood the winds, but maybe another site can be spared in the future. Contact UC-Davis for advice about repair or replacement of IMPROVE sampler structures.

Second, keep in mind that a damaged structure is potentially very dangerous. IMPROVE samplers run on 110-volt line power, possibly creating an electrocution hazard. Please exercise caution around damaged equipment.

For more information contact Chuck McDade at the University of California-Davis. Telephone: 530/752-7119. Fax: 530/752-4107. E-mail: mcdade@crocker.ucdavis.edu.
Operators of distinction

The Omaha, NE, IMPROVE Protocol monitoring site is operated by the Omaha Tribe Environmental Protection Department. Thomas Parker, director and technician of the air program, has been the IMPROVE operator since shortly after the sampler’s installation in 2003. In addition to changing module filters, he ensures the immediate monitoring area is also maintained such as trimming the weeds and replacing missing shingles on the shelter that have blown off in windstorms. Thomas is also responsible for a wide range of other projects associated with the Tribe’s air program, including developing emission inventories, enforcing the program’s regulations, and handling various environmental complaints that citizens direct to the air program office.

Thomas enjoys his work and is pursuing a degree in geology with a focus on environmental studies. His coursework began at the University of Nebraska - Lincoln and he now attends the Little Priest Tribal College. His wife is pursuing a biology degree, and together they have four children, ages 5 years to 15 years. “I’ve invested a lot of time being a scientist,” said Thomas, “the environment affects all mankind and I’d like to see my children follow in my footsteps in helping to protect it. I’d like our environment to be healthy for my grandkids and generations to come.”

A variety of interests allow Thomas to experience nature, such as hunting, fishing, and other outdoor activities. He’s an avid University of Nebraska Huskers football fan, enjoys playing basketball, and is active in several Tribal community activities including the Native American Church, the Native American Grass Dance, and the Native American Powwow Committee.

To request a calendar, contact Jeff Lemke at CIRA. Telephone: 970/491-2209. E-mail: lemke@cira.colostate.edu.

Visibility news continued on page 6.... Monitoring update continued on page 7....
Improving visibility and access to data

Introduction

In the last issue of this newsletter, we discussed the early years of the program, from inception in 1988 through 1992. During this initial period, a site selection process to monitor visibility in Class I areas was formed, the roles of the key supporting agencies were defined, and special research studies were instituted.

The next five years, 1993 - 1997, show modest expansion of the program, increased involvement by federal agencies, an increasing push on publicizing the program, and a look at budgetary ups and downs.

After publication of the last newsletter and the first installment of this article series, it came to light that several more monitoring sites were operational during the first five years of the program than were shown in the article’s map. The article stated that 30 sites operated during the 1988-1992 period. We’ve now discovered that 24 additional sites began monitoring during that period. We believe these sites were accepted through undocumented conference calls among the steering committee members and agencies, hence the reasoning behind the decisions are now lost. The 24 additional sites that became operational during the early years in the program are:

- Arches NP
- Badlands NP
- Bandelier NM
- Craters of the Moon NM
- Everglades NP
- Great Basin NP
- Great Sand Dunes NM
- Guadalupe Mountains NP
- Hawaii Volcanoes NP
- Isle Royale NP
- Joshua Tree NM
- Lassen Volcanic NP
- Meadview, AZ
- National Capital-Central
- Petrified Forest NP
- Pinnacles NM
- Point Reyes NS
- Redwood NP
- Saguaro NP
- Scoville, ID
- Sequoia-Kings Canyon NPs
- Sycamore Canyon W
- Yellowstone NP
- Voyageurs NP

Network expansion

The IMPROVE networks began in 1988 with 20 sites in Class I areas. By 1997, the network expanded to 80 monitoring locations throughout the nation (see Figure 1). In addition to an expanding aerosol network, the optical and scene networks expanded as well. In 1991, the program operated 15 transmissometers, 2 nephelometers, and 28 film camera systems. By 1997, these instrumentation numbers increased to 20 transmissometers, 29 nephelometers, and 44 film camera systems.

The steering committee at this time considered how to protect the photographic record that was growing daily from 44 film cameras taking thousands of photographic slides. It was known that film degrades over time and some more permanent means of archiving slide sets was needed. As for reporting the collected aerosol data, the first IMPROVE three-year spatial and temporal trends report was released in 1993, and was generally developed every three years from that point forward.

Agency participation

Steering committee meetings were held only three times during this five-year period, but many more undocumented telephone conference calls were made. Telephone calls rather than face-to-face meetings were less expensive as budget issues were a concern for every agency. In 1993, the National Park Service, USDA-Forest Service, and U.S. Fish and Wildlife Service developed long-term monitoring strategies for air quality monitoring and all three agencies began providing substantial resources to the program. The USDA-FS alone added more than a dozen additional monitoring sites during this period.

Getting the word out

An effort was made during 1993-1997 to inform researchers, policymakers, and interested organizations and persons throughout the nation about IMPROVE and the important data sets the program was compiling. In essence, advertise what IMPROVE was doing and how monitoring data could be used formally by government agencies and lawmakers.

Beginning in 1993, an effort was made to expand the program’s research into the visibility science. The deciview metric was developed, and has been used ever since as a measurement unit of visual range. Visibility modeling and image simulation methods also advanced. Image simulations, primarily through WinHaze, allowed scientists to create an image of how a selected view would appear when specified concentrations of visibility-related pollutants were present in the atmosphere. Through intensive field studies and focused research programs, scientists expanded the understanding of visual processes and enhanced analytical methods. These research results, along with the quarterly newsletter, were additional tools that allowed dissipation of news and events of the program.
Budgetary concerns
A major concern during the mid-1990s and a good portion of meeting agendas was fluctuating program funding. Reduced funding resulted in transmissometers being discontinued at four monitoring sites, while NPS scientists argued that more funding was needed for data analysis and development of data presentation products. To address annual changes in available funds, the steering committee developed a site evaluation criteria for use in determining future site decommissioning decisions. They also looked into obtaining federal funds from other sources.

In 1997, the Environmental Protection Agency defined an approach for new Regional Haze Regulations, and the IMPROVE network was inline for a potential leading role in the future policy. In meeting the national visibility goal for Class I areas, the EPA specified that ambient visibility/air quality monitoring would likely be the primary means of tracking progress and the IMPROVE Program could be the model used since it had been successful in producing high quality data of the type needed to track trends and because it had well documented procedures.

The EPA defined the metric to be used in documenting regional haze levels, which is still used today; the approach defined metrics for the clean and hazy days as the average of the deciview values for the 20% cleanest and for the 20% most impaired days, respectively. More monitoring sites would be required for this effort since an assessment would have to be done for each visibility-protected federal Class I area throughout the nation. Because the IMPROVE Program was expected to have a substantial role and voice in the monitoring issues for the regional haze regulations, the program expected an increase in the number of monitoring sites participating in the program.

Special studies
IMPROVE has always had keen interest in special research studies to enhance regular monitoring efforts. Studies that occurred during 1993-1997 included:

Development and expansion continued on page 6....
The elemental carbon/organic carbon (EC/OC) distinction is operationally defined, and the differences are not fully understood. Scientists recommend that data users distinguish between 1988-2004 TOR data and later TOR data.

Change in definition of flowrate native flags

Affects: Module A, B, C, all species
Period: Beginning January 1, 2005

This is an informational data advisory. During Summer 2006, the IMPROVE cyclone was characterized and it was found that the equations relating cutpoint to flowrate, developed at UC-Davis, are invalid. Therefore, the native validation flags based on flowrate have been revised. The IMPROVE cyclone is based on the AIHL cyclone specifications and the equation for the cyclone has since been changed. The new equation is much less sensitive to flowrate than the equation used in the past.

IMPROVE has decided to maintain the existing criteria for the clogged filter (CL), clogging filter (CG), and really high flowrate (RF) native flags, but change the numerical flowrate criterion for the low/high flowrate (LF) flag because the prior criterion was not centered on the correct cutpoint as a result of the shift in the equation. The updated criteria have been applied to data beginning January 2005. The native flags LF and RF translate to a V5 status flag in the IMPROVE VIEWS database, and the native flags CG and CL translate to an M3 status flag.

Complete discussions of these and all other data advisories can be found on the IMPROVE Web site at http://vista.cira.colostate.edu/improve/Data/QA_QC/Advisory.htm.

For more information or to submit an advisory, contact Bret Schichtel at CIRA. Telephone: 970/491-8581. Fax: 970/491-8598. E-mail: schichtel@cira.colostate.edu.
Outstanding sites

Data collection begins with those who operate, service, and maintain monitoring instrumentation. IMPROVE managers and contractors thank all site operators for their efforts in caring for IMPROVE and IMPROVE Protocol networks. Sites that achieved 100% data collection for 4th Quarter 2007 are:

Aerosol (Channel A)

- Acadia
- Arendtsville
- Badlands
- Bandelier
- Big Bend
- Birmingham
- Bondville
- Bridger
- Bridgton
- Brigantine
- Bryce Canyon
- Cadiz
- Canyonlands
- Cape Romain
- Capitol Reef
- Casco Bay
- Chassahowitzka
- Chiricahua
- Columbia Gorge West
- Crater Lake
- Craters of the Moon
- Crescent Lake
- Death Valley
- Denali
- Douglas
- Fort Peck
- Gila

Aerosol (Channel A)

- Acadia
- Arendtsville
- Badlands
- Bandelier
- Big Bend
- Birmingham
- Bondville
- Bridger
- Bridgton
- Brigantine
- Bryce Canyon
- Cadiz
- Canyonlands
- Cape Romain
- Capitol Reef
- Casco Bay
- Chassahowitzka
- Chiricahua
- Columbia Gorge West
- Crater Lake
- Craters of the Moon
- Crescent Lake
- Death Valley
- Denali
- Douglas
- Fort Peck
- Gila

Sites that achieved at least 95% data collection for 4th Quarter 2007 are:

- Aerosol (Channel A)
 - Addison Pinnacle
 - Bliss
 - Bosque del Apache
 - Cabinet Mountains
 - Cedar Bluff
 - Cherokee
 - Cloud Peak
 - Columbia Gorge East
 - Dolly Sods
 - Everglades
 - Frostburg Reservoir
 - Gates of the Mountains

Transmissometer

- Bridger
- Cloud Peak
- Columbia Gorge East
- Dolly Sods
- Everglades
- Frostburg Reservoir
- Gates of the Mountains

Nephelometer

- Acadia
- Children’s Park
- Chiricahua
- Dysart
- Estrella
- Acadian
- Children’s Park
- Chiricahua
- Dysart
- Estrella

Photographic

- -- none --
- Acadian
- Children’s Park
- Chiricahua
- Dysart
- Estrella

Monitoring Site Assistance:

Aerosol sites: contact University of California-Davis telephone: 530/752-7119 (Pacific time)

Optical/Scene sites: contact Air Resource Specialists, Inc. telephone: 970/484-7941 (Mountain time)
TO:

First Class Mail

IMPROVE STANDING COMMITTEE
IMPROVE Steering Committee members represent their respective agencies and meet periodically to establish and evaluate program goals and actions. IMPROVE-related questions within agencies should be directed to the agency’s Steering Committee representative.

U.S. EPA
Neil Frank
US EPA MD-14
Emissions, Monitoring and Analysis Div.
Research Triangle Park, NC 27711
Telephone: 919/541-5560
Fax: 919/541-3613
E-mail: frank.neil@epa.gov

NPS
William Malm
Colorado State University
CIRA - Foothills Campus
Fort Collins, CO 80523
Telephone: 970/491-8292
Fax: 970/491-8598
E-mail: malm@cira.colostate.edu

BLM
Scott F. Archer
USDI-Bureau of Land Management
National Science and Technology Center
Denver Federal Center, Building 50
P.O. Box 25047, ST-180
Denver, CO 80225-0047
Telephone: 303/236-6400
Fax: 303/236-3508
E-mail: scott_archer@blm.gov

NACAA
Terry Rowles
MO Dept. of Natural Resources
Air Pollution Control Program
P.O. Box 176
Jefferson City, MO 65102-0176
Telephone: 573/751-4817
E-mail: terry.rowles@dnr.mo.gov

NOAA
Marc Pitchford *
c/o Desert Research Institute
755 E. Flamingo Road
Las Vegas, NV 89119-7363
Telephone: 702/862-5432
Fax: 702/862-5507
E-mail: marc.pitchford@noaa.gov
* Steering Committee chair

USDA-FS
Scott Copeland
USDA-Forest Service
Washakie Ranger Station
333 E. Main Street
Lander, WY 82520
Telephone: 307/332-9737
Fax: 307/332-0264
E-mail: copeland@CIRA.colostate.edu

FWS
Sandra Silva
Fish and Wildlife Service
P.O. Box 25287
12795 W. Alameda Parkway
Denver, CO 80225
Telephone: 303/969-2814
Fax: 303/969-2822
E-mail: sandra_v_silva@fws.gov

BLM
Scott F. Archer
USDI-Bureau of Land Management
National Science and Technology Center
Denver Federal Center, Building 50
P.O. Box 25047, ST-180
Denver, CO 80225-0047
Telephone: 303/236-6400
Fax: 303/236-3508
E-mail: scott_archer@blm.gov

MARAMA
David Krask
Maryland Dept. of the Environment
MARAMA/Air Quality Planning and Monitoring
1800 Washington Blvd.
Baltimore, MD 21230-1720
Telephone: 410/537-3756
Fax: 410/537-4243
E-mail: dkrask@md.state.md.us

NESCAUM
Rich Poirot
VT Agency of Natural Resources
103 South Main Street
Building 3 South
Waterbury, VT 05676
Telephone: 802/241-3807
Fax: 802/244-5141
E-mail: rich.poirot@state.vt.us

WESTAR
Robert Lebens
715 SW Morrison
Suite 503
Portland, OR 97205
Telephone: 503/478-4956
Fax: 503/478-4961
E-mail: blebens@westar.org

ASSOCIATE MEMBERS
Associate Membership in the IMPROVE Steering Committee is designed to foster additional comparable monitoring that will aid in understanding Class I area visibility, without upsetting the balance of organizational interests obtained by the steering committee participants. Associate Member representatives are:

STATE OF ARIZONA
Michael Sundblom
Manager, Air Monitoring Unit
ADEC Air Assessment Section
1110 W. Washington Street
Phoenix, AZ 85007
Telephone: 602/771-2364
Fax: 602/771-4444
E-mail: sundblom.michael@azdeq.gov

* Steering Committee chair