Monitoring update

Network operation status

The IMPROVE (Interagency Monitoring of Protected Visual Environments) Program consists of 110 aerosol visibility monitoring sites selected to provide regionally representative coverage and data for 155 Class I federally protected areas. Additional instrumentation that operates according to IMPROVE protocols in support of the program includes:

- 60 aerosol samplers
- 30 nephelometers
- 2 transmissometers
- 60 Webcamera systems
- 2 digital camera systems
- 5 interpretive displays

IMPROVE Program participants are listed on page 8. Federal land management agencies, states, tribes, regional air partnerships, and other agencies operate supporting instrumentation at monitoring sites as presented in the map below. Preliminary data collection statistics for the 1st Quarter 2010 (January, February, and March) are:

- Aerosol (channel A only) 95% collection
- Aerosol (all modules) 94% completeness
- Optical (nephelometer) 97% collection
- Optical (transmissometer) 99% collection

The USDA-Forest Service will soon post a newly designed image Web site. With 20 monitoring sites collecting and posting images, the response time for viewing had become slow for the site’s users. The new Web site has been completely rewritten to improve its speed and more features have been added. It is scheduled to be available online in early June.

Data availability status

Data and photographic spectrums are available on the IMPROVE Web site at http://vista.cira.colostate.edu/improve/Data/data.htm and on the VIEWS Web site at http://vista.cira.colostate.edu/views. Aerosol data are available through June 2009. Nephelometer and transmissometer data are available through December 2009 and December 2008, respectively. Webcamera displays that show near real-time images and data are available on agency-supported Web sites:

- National Park Service
 http://www.nature.nps.gov/air/WebCams/index.htm
- USDA-Forest Service
 http://www.fsvisimages.com
- CAMNET (Northeast Camera Network)
 http://www.hazecam.net
- Midwest Haze Camera Network
 http://www.mwhazecam.net
- Wyoming Visibility Network
 http://www.wyvisnet.com
- Phoenix, AZ, Visibility Network
 http://www.phoenixvis.net

The EPA AIRNow Web site http://airnow.gov includes many of these as well as additional visibility-related Webcams. Click on View Other Visibility Webcams.
Visibility news

Current status of regional haze planning

The U.S. Environmental Protection Agency’s (EPA)’s 1999 Regional Haze Regulations call for states to establish goals for improving visibility in 156 Class I areas throughout the country, and to achieve reasonable progress to meet “natural conditions” by 2064. Regional planning organizations were also formed at that time to coordinate the effort.

To track this effort, states are required to submit State Implementation Plans (SIPs) to the EPA, beginning with the 2003-2007 timeframe. Subsequent revisions are then called for in 2018 and every 10 years thereafter. States must also submit progress reports to the EPA every 5 years. In these reports, states will compare current visibility conditions to baseline conditions (the average conditions during the years 2000 to 2004), describe changes in emissions of visibility-impairing pollutants, and include any mid-course corrections to management strategies.

Since implementation of the effort, technical strategies and analyses have been developed, yet completion of many SIPs is behind schedule. Figure 1 shows the SIPs that have been submitted to EPA as of March 19, 2010.

For more information contact Tom Moore at the Western Governors’ Assoc./Western Regional Air Partnership. Telephone: 970/491-8837. Fax: 970/491-8598. E-mail: mooret@cira.colostate.edu.

![Figure 1. States that have submitted Final Regional Haze SIPs to EPA (as of March 19, 2010).](image)

Testing the stability of elemental analysis

Scientists at UC-Davis are planning a series of laboratory experiments to evaluate the stability of IMPROVE elemental analysis over the multi-year history of the network. For a few selected sites, all of the available PM$_{2.5}$ Teflon® filters archived since 1994 will be reanalyzed by X-Ray Fluorescence (XRF) in a single analytical session. This session will apply the same analytical method and procedures to the entire historical series.

Changes in laboratory methods or protocols during the two decades of IMPROVE have sometimes introduced clear discontinuities in the data series. For example, the change from PIXE to XRF analysis in 2001 resulted in visible shifts in the data for some elements. Changes in protocols, such as changes in the way calibration data are applied, have also influenced the data series at times.

The reanalysis data will contain their own random uncertainties, but the systematic uncertainties associated with such factors as method, calibration, and instrument condition will no longer vary with sample date. Therefore, any time trend in the reanalysis data can be regarded as genuine if it falls outside the random fluctuations expected from documented analytical imprecision.

Reanalysis will not only elucidate the importance of time-varying errors at the selected sites, but can also support the interpretation of original data at other sites. If comparisons between reanalysis and original data at a few disparate sites were to give similar patterns of discrepancy, the average of these discrepancies could provide an estimate of the time-varying (non-stationary) error common to all sites. Analysts could then adjust original data from other sites to remove this time-varying bias, leaving a more stationary error structure less likely to yield spurious time trends.

For more information contact Chuck McDade at UC-Davis. Telephone: 530/752-7119. Fax: 530/752-4107. E-mail: mcdade@crocker.ucdavis.edu.
Black carbon and ozone as short-lived climate forcers workshop

The EPA sponsored a workshop on Black Carbon and Ozone as Short-Lived Climate Forcers (SLCF) in Chapel Hill, NC, March 3-4, 2010. SLCF are components of the atmosphere which, like carbon dioxide, have an influence on the radiative energy balance of the earth (i.e., they can contribute to warming or cooling), but unlike carbon dioxide they are removed from the atmosphere relatively quickly (days to weeks as opposed to hundreds of years). In recent years, scientists have determined that black carbon contribution to global heating is substantial though not as great as that from carbon dioxide. The workshop’s purpose was to begin a dialog among policy-makers and scientists, climate and air quality communities, and domestic and international experts concerning possible emission mitigation actions for SLCF that could make a difference for climate in the short term.

Congress tasked the EPA with preparation of a report by April, 2011, that includes an inventory of major sources of black carbon, assesses the impacts of black carbon on global and regional climate, compares its impacts on climate to that of carbon dioxide and other greenhouse gases, identifies the most cost effective approaches to reduce black carbon emissions, and assesses the climatic and other environmental/public health effects that might be associated with implementing black carbon emissions controls.

From 1988 to the present, the IMPROVE network has generated elemental carbon and filter-based optical absorption measurement data that are closely related to black carbon concentrations. Spatial and temporal trends and source attribution assessments conducted using the IMPROVE data may play an influential role in the development of U.S. policy with respect to emissions of black carbon. Appropriate uses of IMPROVE carbon data for climate change analysis will be discussed at the next IMPROVE Steering Committee meeting during Fall 2010.

Monitoring update continued from page 1....

Operators of distinction

Casco Bay, Maine, is one of those “On Golden Pond” areas, as described by IMPROVE site operator Don Prince. That’s one reason he plans on staying put when he makes his decision to retire. Until then, he is dedicated to working at the Maine Department of Environmental Protection (DEP) providing field service and data processing for the southern region’s air quality stations.

Don has worked with the DEP for 15 years and is the primary operator for the Casco Bay monitoring station as well as the backup operator for the IMPROVE Bridgton station. He is also responsible for sites that run several types of samplers, including gaseous (ozone, sulfur dioxide, carbon monoxide, and nitrogen oxides), acid deposition and mercury, filter-based particulate, and hazardous pollutant. “I’m also responsible for being the ‘first responder’ to my backup sites if there’s a maintenance issue,” said Don. He keeps the instrumentation operating smoothly and is quick to correct any issues that arise.

In the office, Don polls data from the six stations in the region. Don assigns a flag to any missing parameter value describing the reason for the missing data. Then the data are forwarded onto the U.S. Environmental Protection Agency (EPA). “The DEP has changed their operations dramatically over the past few years,” said Don, “Data collection involves more elaborate electronic methods, and methods of forwarding onto the EPA changes from year to year.” Long before joining the DEP, Don graduated from Cornell University with a B.S. degree in pomology (science of fruit cultivation), then joined his father on the family’s apple orchard. He later took over management of the orchard, and in 1989 dissolved the 200-year-old family business to seek a change. He joined the state’s Pesticide Control Board as a field inspector before coming to the DEP.

Don loves to spend time with his grandchildren, hike to mountaintops, and glide across a nearby pond in an old canoe. His semi-rustic cabin in the woods is only 10 minutes from his house. “You can hear the loons at dusk,” said Don. No wonder he plans on living there when he retires.

Visibility news continued on page 6....
EPA releases report -- the status and trends of our nation's air

Introduction
The U.S. Environmental Protection Agency (EPA) has released a 54-page report summarizing the status of our nation’s air quality. Data collected since 1990, when the Clean Air Act Amendments were passed, were used in this national evaluation. This article summarizes the report’s findings of pollutant trends and climate change discussion.

Six common pollutants
Air pollution is known to be linked to a variety of health problems and environmental damage, hence the EPA has set, and regularly reviews, National Ambient Air Quality Standards (NAAQS) to protect both our health and our environment. Standards exist for the following six common pollutants, and as seen in Figure 1, levels of these pollutants are declining.

Ozone
Ground-level ozone concentrations were 10% lower in 2008 than in 2001, although many areas measured concentrations above the NAAQS. Significant improvement in the levels of ozone pollution have been seen in many areas in recent years, largely due to controls of local volatile organic compound (VOC) emissions and local and regional nitrogen oxides emissions.

Particle pollution
Particulate matter ≤ 10 μm (PM$_{10}$) measured over 24 hours show a 19 percent drop between 2001 and 2008. Particulate matter ≤ 2.5 μm (PM$_{2.5}$) show either a decline or little change for the three-year periods of 2001-2003 and 2006-2008.

Lead
Airborne concentrations of lead decreased by 40 percent between 2001 and 2008. Monitoring locations that exceeded the 2008 NAAQS for lead are all located near stationary sources of this pollutant. In 2010, approximately 250 new locations will monitor lead concentrations.

Nitrogen dioxide, carbon monoxide, and sulfur dioxide
The last three common pollutants, nitrogen dioxide, carbon monoxide, and sulfur dioxide, all decreased significantly between 2001 and 2008. Nitrogen dioxide concentrations decreased 27 percent, 8-hour carbon monoxide concentrations decreased 41 percent, and sulfur dioxide concentrations decreased 30 percent. The EPA is currently reviewing the NAAQS for each of these pollutants, and changes in the standards may be seen later this year.

Toxic air pollutants
The EPA’s report also studied the 187 regulated toxic air pollutants. Benzene and diesel exhaust are the two most significant pollutants linked to cancer risk; both these chemicals are found to be declining in our atmosphere. Over 300 toxic air pollutant monitoring stations collect data in the U.S., and are operated by the EPA, state, local, and tribal agencies.

Atmospheric deposition
Acid deposition in the U.S. declined significantly between 1989-1991 and again between 2006-2008. Reduced acid deposition leads to better water quality, healthier lakes and streams, and healthier aquatic wildlife. Sulfur dioxide emissions have decreased by about 52 percent from 1990 levels and nitrogen oxide emissions have decreased as well. The EPA is currently reviewing these secondary NAAQS and looking at the relationship between acid deposition and ecological effects. The review is scheduled to be completed in 2012.

Figure 1. National levels of the six common pollutants are compared to the most recent NAAQS, using complete data sets from 1990-2008.
Visibility in scenic areas
The EPA and the National Park Service, along with other federal land managers, jointly operate a long-term visibility program, with stations in 155 national parks and wilderness areas nationwide. The Regional Haze Rule, issued by the EPA in 1999, mandates that natural background conditions be achieved before 2064. These natural background conditions are visibility conditions that existed before human-caused pollution. As seen in Figure 2, long-term visibility trends indicate that visibility is improving, on both the 20% worst days and the 20% best days. Yet considerable progress is still needed to reach the goal.

Climate change and air quality
Our climate may be changing as well -- most of the solar radiation Earth receives is radiated back toward space. Some of this radiative energy, however, can be trapped in our atmosphere by greenhouse gases such as carbon dioxide and methane, which can prevent the heat from escaping. Other pollutants, such as black carbon, absorb the solar radiation and prevent reflection of sunlight off snow and ice. Recent studies suggest that black carbon may have an impact on Earth’s climate as well. Some of these pollutants stay in the atmosphere for only a few days or weeks, while others, like carbon dioxide, can remain aloft for decades to centuries.

According to the EPA, domestic greenhouse gas emissions increased 17 percent from 1990-2007, most likely due to increased consumption of fossil fuels to generate electricity.

International transport of air pollution
The U.S. must deal with domestic-released air pollution sources as well as foreign-released sources. International flow of pollutants into the U.S. came in the form of ozone, fine particles, deposition of mercury, organic pollutants, and acid deposition. Increased levels of these pollutants may cause difficulties for states and regional agencies to maintain their NAAQS compliance and long-term visibility goals. The EPA and other agencies are working through cooperative efforts to address the international transport of air pollution across the country.

Visibility news continued from page 3

Data advisories released

Arcane flagging of early hydrogen and fine mass data
- Affects: Module A - fine mass (MF), hydrogen (H)
- Period: September 1, 1990 - February 26, 1992

Analysts may choose to work only with “normal” data having no qualifications (those with native flag NM and VIEWS status flag V0). In most years, very few data are qualified. From 9/1/90 through 2/26/92, however, all fine mass and hydrogen data are flagged to reflect concerns for sporadic contamination that are described on page 2 of the Winter 1992 IMPROVE Newsletter.

For this period, all non-missing MF and H values carry native flags AA or AP and VIEWS status flag V5. The AA flag denotes observations that were retrospectively invalidated. The AP flag denotes observations that were retrospectively judged valid as described in the newsletter. It is recommended to include the non-zero data with a native flag AP as valid and exclude data with a native flag AA as invalid.

Bias between masked and unmasked light absorption measurements
- Affects: Module A - \(f_{\text{abs}} \)
- Period: Before 2008

Masks were historically used at many sites to reduce the nominal collection area of Module A filters from 3.53 cm\(^2\) to 2.20 cm\(^2\). As recently as 2003, masks were employed at approximately half of all sites, and by the end of 2007, all masks had been removed.

IMPROVE’s Hybrid Integrating Plate/Sphere (HIPS) measures the absorption thickness of a filter sample. Absorption thickness can be thought of as the cross-section of the absorbing material multiplied by the material’s areal mass loading on the filter. Well-recognized artifacts of the method cause measured absorption to increase less than proportionately with the mass loading. Because masking generates higher areal loadings at the same atmospheric conditions, some bias toward lower absorption readings for masked samples can be expected to result from this loading dependence. Another, less recognized artifact of masking, is even when the filters yield equal areal loadings (from lower atmospheric concentrations), masked samples give slightly lower absorption readings. It is recommended that data users recognize the effect of mask removal on reported absorption.

Suspect light-absorption data from three months in 2000
- Affects: Module A - \(f_{\text{abs}} \)
- Period: September 1, 2000 - November 30, 2000

Reported light-absorption values dropped sharply across the entire network at the start of September 2000, and remained low for three months. The drop was abrupt relative to other aerosol indices (Figure 1), and was evident only in \(f_{\text{abs}} \). The anomalous three months coincide with a meteorological quarter, by which laboratory operations were at that time organized, suggests the divergence reflects an unidentified problem in the HIPS analysis for \(f_{\text{abs}} \). Absorption was below HIPS detection limits in many of the fall quarter samples. It is recommended these data be excluded from analysis.

Marginal detection of heavy elements by PIXE analysis
- Affects: Module A - Pb, Sr, Se, and Rb
- Period: Before June 1, 1992

The heavy elements in samples collected since June 1, 1992, have been determined by X-Ray Fluorescence (XRF). In earlier samples, those elements were determined by Proton-Induced X-ray Emission (PIXE). The PIXE analysis was considerably less sensitive for lead, strontium, selenium, and rubidium. The concentration statistics of marginally detected elements are known to be distorted by the censoring of undetected amounts. It is recommended that data users recognize the trend artifacts introduced by the PIXE-XRF transition.

A complete discussion of these and all other data advisories can be found on the IMPROVE Web site at http://vista.cira.colostate.edu/improve/Data/QA_QC/Advisory.htm.

For more information or to submit an advisory, contact Bret Schichtel at CIRA. Telephone: 970/491-8581. Fax: 970/491-8598. E-mail: schichtel@cira.colostate.edu.
Outstanding sites

Data collection begins with those who operate, service, and maintain monitoring instrumentation. IMPROVE managers and contractors thank all site operators for their efforts in caring for IMPROVE and IMPROVE Protocol networks. Sites that achieved 100% data collection for 1st Quarter 2010 are:

Aerosol (Channel A)
- Acadia
- Addison Pinnacle
- Agua Tibia
- Arendtsville
- Badlands
- Bliss
- Bondville
- Boulder Lake
- Bridger
- Bridgton
- Brigantine
- Bryce Canyon
- Cabinet Mountains
- Cadiz
- Caney Creek
- Canyonlands
- Cape Cod
- Capitol Reef
- Casco Bay
- Cedar Bluff
- Chassahowitzka
- Cherokee
- Chiricahua
- Columbia Gorge East
- Crater Lake
- Craters of the Moon
- Crescent Lake
- Death Valley
- Dolly Sods
- Dome Land
- Douglas
- Egbert
- Nephelometer
- Photographic

Sites that achieved at least 95% data collection for 1st Quarter 2010 are:

Aerosol (Channel A)
- Acadia
- Children’s Park
- Chiricahua
- Cloud Peak
- Craycroft
- Dysart
- Nephelometer
- Photographic

Sites that achieved at least 90% data collection for 1st Quarter 2010 are:

Aerosol (Channel A)
- Bandelier
- Birmingham
- Bosque del Apache
- Columbia Gorge West
- Gates of the Mountains
- Nephelometer
- Photographic

Monitoring Site Assistance:
Aerosol sites: contact University of California-Davis telephone: 530/752-7119 (Pacific time)
Optical/Scene sites: contact Air Resource Specialists, Inc. telephone: 970/484-7941 (Mountain time)
TO:

First Class Mail

IMPROVE Steering Committee members represent their respective agencies and meet periodically to establish and evaluate program goals and actions. IMPROVE-related questions within agencies should be directed to the agency’s Steering Committee representative.

U.S. EPA
Neil Frank
US EPA MD-14
Emissions, Monitoring and Analysis Div.
Research Triangle Park, NC 27711
Telephone: 919/541-5560
Fax: 919/541-3613
E-mail: frank.neil@epa.gov

NPS
Bret Schichtel
Colorado State University
CIRA - Foothills Campus
Fort Collins, CO 80523
Telephone: 970/491-8581
Fax: 970/491-8598
E-mail: schichtel@colostate.edu

USDA-FS
Scott Copeland
USDA-Forest Service
Washakie Ranger Station
333 E. Main Street
Lander, WY 82520
Telephone: 307/332-9737
Fax: 307/332-0264
E-mail: copeland@CIRA.colostate.edu

USFWS
Sandra Silva
US Fish and Wildlife Service
7333 W. Jefferson Avenue
Suite 375
Lakewood, CO 80235
Telephone: 303/914-3801
Fax: 303/969-5444
E-mail: sandra_v_silva@fws.gov

BLM
Scott F. Archer
USDI-Bureau of Land Management
National Science and Technology Center
Denver Federal Center, Building 50
P.O. Box 25047, ST-180
Denver, CO 80225-0047
Telephone: 303/236-6400
Fax: 303/236-3508
E-mail: scott_archer@blm.gov

MARAMA
David Krask
Maryland Dept. of the Environment
MARAMA/Air Quality Planning and Monitoring
1800 Washington Blvd.
Baltimore, MD 21230-1720
Telephone: 410/537-3756
Fax: 410/537-4243
E-mail: dkrask@md.e.state.md.us

NESCAUM
Rich Poiriot
VT Agency of Natural Resources
103 South Main Street
Building 3 South
Waterbury, VT 05676
Telephone: 802/241-3807
Fax: 802/244-5141
E-mail: rich.poiriot@state.vt.us

WESTAR
Robert Lebens
715 SW Morrison
Suite 503
Portland, OR 97205
Telephone: 503/478-4956
Fax: 503/478-4961
E-mail: blebens@westar.org

ASSOCIATE MEMBERS
Associate Membership in the IMPROVE Steering Committee is designed to foster additional comparable monitoring that will aid in understanding Class I area visibility, without upsetting the balance of organizational interests obtained by the steering committee participants. Associate Member representatives are:

STATE OF ARIZONA
Steven Peplau
Section Manager - Air Assessment
Arizona Dept. of Environmental Quality
1110 W. Washington Street
Phoenix, AZ 85007
Telephone: 602/771-2274
Fax: 602/771-2366
E-mail: peplau.steven@azdeq.gov

ASSOCIATE MEMBERS
Associate Membership in the IMPROVE Steering Committee is designed to foster additional comparable monitoring that will aid in understanding Class I area visibility, without upsetting the balance of organizational interests obtained by the steering committee participants. Associate Member representatives are:

NACAA
Terry Rowles
MO Dept. of Natural Resources
Air Pollution Control Program
P.O. Box 176
Jefferson City, MO 65102-0176
Telephone: 573/751-4817
Fax: 573/751-2706
E-mail: terry.rowles@dnr.mo.gov

NOAA
Marc Pitchford *
c/o Desert Research Institute
755 E. Flamingo Road
Las Vegas, NV 89119-7363
Telephone: 702/862-5432
Fax: 702/862-5507
E-mail: marc.pitchford@noaa.gov
* Steering Committee Chair

NOAA
Marc Pitchford *
c/o Desert Research Institute
755 E. Flamingo Road
Las Vegas, NV 89119-7363
Telephone: 702/862-5432
Fax: 702/862-5507
E-mail: marc.pitchford@noaa.gov
* Steering Committee Chair